ref: c0bc9d332f3ab51a43d5e3d0da2d5a32e938b1d2
dir: /render.c/
#include <u.h> #include <libc.h> #include <thread.h> #include <draw.h> #include <memdraw.h> #include <geometry.h> #include "libobj/obj.h" #include "graphics.h" #include "internal.h" Rectangle UR = {0,0,1,1}; static void pixel(Memimage *dst, Point p, Memimage *src) { if(dst == nil || src == nil) return; memimagedraw(dst, rectaddpt(UR, p), src, ZP, nil, ZP, SoverD); } static int isvisible(Point3 p) { if(p.x < -p.w || p.x > p.w || p.y < -p.w || p.y > p.w || p.z < -p.w || p.z > p.w) return 0; return 1; } static void mulsdm(double r[6], double m[6][4], Point3 p) { int i; for(i = 0; i < 6; i++) r[i] = m[i][0]*p.x + m[i][1]*p.y + m[i][2]*p.z + m[i][3]*p.w; } typedef struct { Vertex *v; ulong n; ulong cap; } Polygon; static int addvert(Polygon *p, Vertex v) { if(++p->n > p->cap) p->v = erealloc(p->v, (p->cap = p->n)*sizeof(*p->v)); p->v[p->n-1] = v; return p->n; } static void swappoly(Polygon *a, Polygon *b) { Polygon tmp; tmp = *a; *a = *b; *b = tmp; } /* * references: * - James F. Blinn, Martin E. Newell, “Clipping Using Homogeneous Coordinates”, * SIGGRAPH '78, pp. 245-251 * - https://cs418.cs.illinois.edu/website/text/clipping.html * - https://github.com/aap/librw/blob/14dab85dcae6f3762fb2b1eda4d58d8e67541330/tools/playground/tl_tests.cpp#L522 */ static int cliptriangle(Triangle *t) { /* signed distance from each clipping plane */ static double sdm[6][4] = { 1, 0, 0, 1, /* l */ -1, 0, 0, 1, /* r */ 0, 1, 0, 1, /* b */ 0, -1, 0, 1, /* t */ 0, 0, 1, 1, /* f */ 0, 0, -1, 1, /* n */ }; double sd0[6], sd1[6]; double d0, d1, perc; Polygon Vin, Vout; Vertex *v0, *v1, v; /* edge verts and new vertex (line-plane intersection) */ int i, j, nt; nt = 0; memset(&Vin, 0, sizeof Vin); memset(&Vout, 0, sizeof Vout); for(i = 0; i < 3; i++) addvert(&Vin, t[0][i]); for(j = 0; j < 6; j++){ for(i = 0; i < Vin.n; i++){ v0 = &Vin.v[i]; v1 = &Vin.v[(i+1) % Vin.n]; mulsdm(sd0, sdm, v0->p); mulsdm(sd1, sdm, v1->p); if(sd0[j] < 0 && sd1[j] < 0) continue; if(sd0[j] >= 0 && sd1[j] >= 0) goto allin; d0 = (j&1) == 0? sd0[j]: -sd0[j]; d1 = (j&1) == 0? sd1[j]: -sd1[j]; perc = d0/(d0 - d1); v.p = lerp3(v0->p, v1->p, perc); v.n = lerp3(v0->n, v1->n, perc); v.c = lerp3((Point3)v0->c, (Point3)v1->c, perc); v.uv = lerp2(v0->uv, v1->uv, perc); v.intensity = flerp(v0->intensity, v1->intensity, perc); v.pos = lerp3(v0->pos, v1->pos, perc); addvert(&Vout, v); if(sd1[j] >= 0){ allin: addvert(&Vout, *v1); } } if(j < 6-1){ swappoly(&Vin, &Vout); Vout.n = 0; } } /* triangulate */ if(Vout.n >= 3) for(i = 0; i < Vout.n-2; i++, nt++){ t[nt][0] = Vout.v[0]; t[nt][1] = Vout.v[i+1]; t[nt][2] = Vout.v[i+2]; } free(Vout.v); free(Vin.v); return nt; } /* * transforms p from e's reference frame into * the world. */ Point3 model2world(Entity *e, Point3 p) { return invrframexform3(p, *e); } /* * transforms p from the world reference frame * to c's one (aka Viewing Coordinate System). */ Point3 world2vcs(Camera *c, Point3 p) { return rframexform3(p, *c); } /* * projects p from the VCS to clip space, placing * p.[xyz] ∈ (-∞,-w)∪[-w,w]∪(w,∞) where [-w,w] * represents the visibility volume. * * the clipping planes are: * * | -w | w | * +----------------+ * | left | right | * | bottom | top | * | far | near | */ Point3 vcs2clip(Camera *c, Point3 p) { return xform3(p, c->proj); } Point3 world2clip(Camera *c, Point3 p) { return vcs2clip(c, world2vcs(c, p)); } /* * performs the perspective division, placing * p.[xyz] ∈ [-1,1] and p.w = 1/z * (aka Normalized Device Coordinates). * * p.w is kept as z⁻¹ so we can later do * perspective-correct attribute interpolation. */ static Point3 clip2ndc(Point3 p) { p.w = 1.0/p.w; p.x *= p.w; p.y *= p.w; p.z *= p.w; return p; } /* * scales p to fit the destination viewport, * placing p.x ∈ [0,width], p.y ∈ [0,height], * p.z ∈ [0,1] and leaving p.w intact. */ static Point3 ndc2viewport(Framebuf *fb, Point3 p) { Matrix3 view = { Dx(fb->r)/2.0, 0, 0, Dx(fb->r)/2.0, 0, -Dy(fb->r)/2.0, 0, Dy(fb->r)/2.0, 0, 0, 1.0/2.0, 1.0/2.0, 0, 0, 0, 1, }; double w; w = p.w; p.w = 1; p = xform3(p, view); p.w = w; return p; } void perspective(Matrix3 m, double fov, double a, double n, double f) { double cotan; cotan = 1/tan(fov/2); identity3(m); m[0][0] = cotan/a; m[1][1] = cotan; m[2][2] = (f+n)/(f-n); m[2][3] = -2*f*n/(f-n); m[3][2] = -1; } void orthographic(Matrix3 m, double l, double r, double b, double t, double n, double f) { identity3(m); m[0][0] = 2/(r - l); m[1][1] = 2/(t - b); m[2][2] = -2/(f - n); m[0][3] = -(r + l)/(r - l); m[1][3] = -(t + b)/(t - b); m[2][3] = -(f + n)/(f - n); } static void rasterize(SUparams *params, Triangle t, Memimage *frag) { FSparams fsp; Triangle2 t₂, tt₂; Triangle3 ct; Rectangle bbox; Point p, tp; Point3 bc; double z, depth; uchar cbuf[4]; t₂.p0 = Pt2(t[0].p.x, t[0].p.y, 1); t₂.p1 = Pt2(t[1].p.x, t[1].p.y, 1); t₂.p2 = Pt2(t[2].p.x, t[2].p.y, 1); /* find the triangle's bbox and clip it against the fb */ bbox = Rect( min(min(t₂.p0.x, t₂.p1.x), t₂.p2.x), min(min(t₂.p0.y, t₂.p1.y), t₂.p2.y), max(max(t₂.p0.x, t₂.p1.x), t₂.p2.x)+1, max(max(t₂.p0.y, t₂.p1.y), t₂.p2.y)+1 ); bbox.min.x = max(bbox.min.x, params->fb->r.min.x); bbox.min.y = max(bbox.min.y, params->fb->r.min.y); bbox.max.x = min(bbox.max.x, params->fb->r.max.x); bbox.max.y = min(bbox.max.y, params->fb->r.max.y); cbuf[0] = 0xFF; fsp.su = params; fsp.frag = frag; fsp.cbuf = cbuf; /* perspective-divide the attributes */ t[0].n = mulpt3(t[0].n, t[0].p.w); t[1].n = mulpt3(t[1].n, t[1].p.w); t[2].n = mulpt3(t[2].n, t[2].p.w); t[0].c = mulpt3(t[0].c, t[0].p.w); t[1].c = mulpt3(t[1].c, t[1].p.w); t[2].c = mulpt3(t[2].c, t[2].p.w); t[0].uv = mulpt2(t[0].uv, t[0].p.w); t[1].uv = mulpt2(t[1].uv, t[1].p.w); t[2].uv = mulpt2(t[2].uv, t[2].p.w); t[0].intensity = t[0].intensity*t[0].p.w; t[1].intensity = t[1].intensity*t[1].p.w; t[2].intensity = t[2].intensity*t[2].p.w; t[0].pos = mulpt3(t[0].pos, t[0].p.w); t[1].pos = mulpt3(t[1].pos, t[1].p.w); t[2].pos = mulpt3(t[2].pos, t[2].p.w); for(p.y = bbox.min.y; p.y < bbox.max.y; p.y++) for(p.x = bbox.min.x; p.x < bbox.max.x; p.x++){ bc = barycoords(t₂, Pt2(p.x,p.y,1)); if(bc.x < 0 || bc.y < 0 || bc.z < 0) continue; z = t[0].p.z*bc.x + t[1].p.z*bc.y + t[2].p.z*bc.z; depth = fclamp(z, 0, 1); lock(¶ms->fb->zbuflk); if(depth <= params->fb->zbuf[p.x + p.y*Dx(params->fb->r)]){ unlock(¶ms->fb->zbuflk); continue; } params->fb->zbuf[p.x + p.y*Dx(params->fb->r)] = depth; unlock(¶ms->fb->zbuflk); /* lerp z⁻¹ and get actual z */ z = t[0].p.w*bc.x + t[1].p.w*bc.y + t[2].p.w*bc.z; z = 1.0/(z < 1e-5? 1e-5: z); if((t[0].uv.w + t[1].uv.w + t[2].uv.w) != 0){ /* lerp attribute and dissolve perspective */ tt₂.p0 = mulpt2(t[0].uv, bc.x*z); tt₂.p1 = mulpt2(t[1].uv, bc.y*z); tt₂.p2 = mulpt2(t[2].uv, bc.z*z); tp.x = (tt₂.p0.x + tt₂.p1.x + tt₂.p2.x)*Dx(params->entity->mdl->tex->r); tp.y = (1 - (tt₂.p0.y + tt₂.p1.y + tt₂.p2.y))*Dy(params->entity->mdl->tex->r); switch(params->entity->mdl->tex->chan){ case RGB24: unloadmemimage(params->entity->mdl->tex, rectaddpt(UR, tp), cbuf+1, sizeof cbuf - 1); cbuf[0] = 0xFF; break; case RGBA32: unloadmemimage(params->entity->mdl->tex, rectaddpt(UR, tp), cbuf, sizeof cbuf); break; case XRGB32: unloadmemimage(params->entity->mdl->tex, rectaddpt(UR, tp), cbuf, sizeof cbuf); memmove(cbuf+1, cbuf, 3); cbuf[0] = 0xFF; break; } }else{ /* lerp attribute and dissolve perspective */ ct.p0 = mulpt3(t[0].c, bc.x*z); ct.p1 = mulpt3(t[1].c, bc.y*z); ct.p2 = mulpt3(t[2].c, bc.z*z); cbuf[0] = (ct.p0.w + ct.p1.w + ct.p2.w)*0xFF; cbuf[1] = (ct.p0.z + ct.p1.z + ct.p2.z)*0xFF; cbuf[2] = (ct.p0.y + ct.p1.y + ct.p2.y)*0xFF; cbuf[3] = (ct.p0.x + ct.p1.x + ct.p2.x)*0xFF; } params->var_intensity = dotvec3(Vec3(t[0].intensity, t[1].intensity, t[2].intensity), bc)*z; params->var_normal = normvec3(addpt3(addpt3( mulpt3(t[0].n, bc.x*z), mulpt3(t[1].n, bc.y*z)), mulpt3(t[2].n, bc.z*z))); params->var_pos = addpt3(addpt3( mulpt3(t[0].pos, bc.x*z), mulpt3(t[1].pos, bc.y*z)), mulpt3(t[2].pos, bc.z*z)); fsp.p = p; fsp.bc = bc; pixel(params->fb->cb, p, params->fshader(&fsp)); } } static void shaderunit(void *arg) { SUparams *params; VSparams vsp; Memimage *frag; OBJVertex *verts, *tverts, *nverts; /* geometric, texture and normals vertices */ OBJIndexArray *idxtab; OBJElem **ep, **eb, **ee; Point3 n; /* surface normal */ Triangle *t; /* triangles to raster */ int i, nt; params = arg; vsp.su = params; frag = rgb(DBlack); threadsetname("shader unit #%d", params->id); t = emalloc(sizeof(*t)*16); verts = params->entity->mdl->obj->vertdata[OBJVGeometric].verts; tverts = params->entity->mdl->obj->vertdata[OBJVTexture].verts; nverts = params->entity->mdl->obj->vertdata[OBJVNormal].verts; eb = params->entity->mdl->elems; ee = eb + params->entity->mdl->nelems; for(ep = eb; ep != ee; ep++){ nt = 1; /* start with one. after clipping it might change */ idxtab = &(*ep)->indextab[OBJVGeometric]; t[0][0].p = Pt3(verts[idxtab->indices[0]].x,verts[idxtab->indices[0]].y,verts[idxtab->indices[0]].z,verts[idxtab->indices[0]].w); t[0][1].p = Pt3(verts[idxtab->indices[1]].x,verts[idxtab->indices[1]].y,verts[idxtab->indices[1]].z,verts[idxtab->indices[1]].w); t[0][2].p = Pt3(verts[idxtab->indices[2]].x,verts[idxtab->indices[2]].y,verts[idxtab->indices[2]].z,verts[idxtab->indices[2]].w); idxtab = &(*ep)->indextab[OBJVNormal]; if(idxtab->nindex == 3){ t[0][0].n = Vec3(nverts[idxtab->indices[0]].i, nverts[idxtab->indices[0]].j, nverts[idxtab->indices[0]].k); t[0][0].n = normvec3(t[0][0].n); t[0][1].n = Vec3(nverts[idxtab->indices[1]].i, nverts[idxtab->indices[1]].j, nverts[idxtab->indices[1]].k); t[0][1].n = normvec3(t[0][1].n); t[0][2].n = Vec3(nverts[idxtab->indices[2]].i, nverts[idxtab->indices[2]].j, nverts[idxtab->indices[2]].k); t[0][2].n = normvec3(t[0][2].n); }else{ /* TODO build a list of per-vertex normals earlier */ n = normvec3(crossvec3(subpt3(t[0][1].p, t[0][0].p), subpt3(t[0][2].p, t[0][0].p))); t[0][0].n = t[0][1].n = t[0][2].n = n; } idxtab = &(*ep)->indextab[OBJVTexture]; if(params->entity->mdl->tex != nil && idxtab->nindex == 3){ t[0][0].uv = Pt2(tverts[idxtab->indices[0]].u, tverts[idxtab->indices[0]].v, 1); t[0][1].uv = Pt2(tverts[idxtab->indices[1]].u, tverts[idxtab->indices[1]].v, 1); t[0][2].uv = Pt2(tverts[idxtab->indices[2]].u, tverts[idxtab->indices[2]].v, 1); }else{ t[0][0].uv = t[0][1].uv = t[0][2].uv = Vec2(0,0); } for(i = 0; i < 3; i++){ t[0][i].c.r = (*ep)->mtl != nil? (*ep)->mtl->Kd.r: 1; t[0][i].c.g = (*ep)->mtl != nil? (*ep)->mtl->Kd.g: 1; t[0][i].c.b = (*ep)->mtl != nil? (*ep)->mtl->Kd.b: 1; t[0][i].c.a = /*(*ep)->mtl != nil? (*ep)->mtl->d:*/ 1; } vsp.v = &t[0][0]; vsp.idx = 0; t[0][0].p = params->vshader(&vsp); vsp.v = &t[0][1]; vsp.idx = 1; t[0][1].p = params->vshader(&vsp); vsp.v = &t[0][2]; vsp.idx = 2; t[0][2].p = params->vshader(&vsp); if(!isvisible(t[0][0].p) || !isvisible(t[0][1].p) || !isvisible(t[0][2].p)) nt = cliptriangle(t); while(nt--){ t[nt][0].p = ndc2viewport(params->fb, clip2ndc(t[nt][0].p)); t[nt][1].p = ndc2viewport(params->fb, clip2ndc(t[nt][1].p)); t[nt][2].p = ndc2viewport(params->fb, clip2ndc(t[nt][2].p)); rasterize(params, t[nt], frag); } } free(t); freememimage(frag); sendp(params->donec, nil); free(params); threadexits(nil); } void shade(Framebuf *fb, Scene *sc, Shader *s) { int i; uvlong time; Entity *ent; SUparams *params; Channel *donec; time = nanosec(); donec = chancreate(sizeof(void*), 0); /* TODO come up with an actual concurrent architecture */ for(i = 0, ent = sc->ents.next; i < sc->nents; i++, ent = ent->next){ params = emalloc(sizeof *params); params->fb = fb; params->id = i; params->donec = donec; params->entity = ent; params->uni_time = time; params->vshader = s->vshader; params->fshader = s->fshader; proccreate(shaderunit, params, mainstacksize); } while(i--) recvp(donec); chanfree(donec); }