ref: dc597a2c65278119b7d11f83218b860c0c5da051
dir: /clip.c/
#include <u.h> #include <libc.h> #include <thread.h> #include <draw.h> #include <memdraw.h> #include <geometry.h> #include "libobj/obj.h" #include "graphics.h" #include "internal.h" enum { CLIPL = 1, CLIPR = 2, CLIPT = 4, CLIPB = 8, }; static void mulsdm(double r[6], double m[6][4], Point3 p) { int i; for(i = 0; i < 6; i++) r[i] = m[i][0]*p.x + m[i][1]*p.y + m[i][2]*p.z + m[i][3]*p.w; } static int addvert(Polygon *p, Vertex v) { if(++p->n > p->cap) p->v = erealloc(p->v, (p->cap = p->n)*sizeof(*p->v)); p->v[p->n-1] = v; return p->n; } static void swappoly(Polygon *a, Polygon *b) { Polygon tmp; tmp = *a; *a = *b; *b = tmp; } static void cleanpoly(Polygon *p) { int i; for(i = 0; i < p->n; i++) delvattrs(&p->v[i]); p->n = 0; } static void fprintpoly(int fd, Polygon *p) { int i; for(i = 0; i < p->n; i++) fprint(fd, "%d/%lud p %V\n", i, p->n, p->v[i].p); } static int eqpt3(Point3 a, Point3 b) { return vec3len(subpt3(a, b)) < 1e-6; } /* * references: * - James F. Blinn, Martin E. Newell, “Clipping Using Homogeneous Coordinates”, * SIGGRAPH '78, pp. 245-251 * - https://cs418.cs.illinois.edu/website/text/clipping.html * - https://github.com/aap/librw/blob/14dab85dcae6f3762fb2b1eda4d58d8e67541330/tools/playground/tl_tests.cpp#L522 */ int clipprimitive(Primitive *p) { /* signed distance from each clipping plane */ static double sdm[6][4] = { 1, 0, 0, 1, /* l */ -1, 0, 0, 1, /* r */ 0, 1, 0, 1, /* b */ 0, -1, 0, 1, /* t */ 0, 0, 1, 1, /* f */ 0, 0, -1, 1, /* n */ }; double sd0[6], sd1[6]; double d0, d1, perc; Polygon Vin, Vout; Vertex *v0, *v1, v; /* edge verts and new vertex (line-plane intersection) */ int i, j, np; np = 0; memset(&Vin, 0, sizeof Vin); memset(&Vout, 0, sizeof Vout); for(i = 0; i < p[0].type+1; i++) addvert(&Vin, p[0].v[i]); for(j = 0; j < 6 && Vin.n > 0; j++){ for(i = 0; i < Vin.n; i++){ v0 = &Vin.v[i]; v1 = &Vin.v[(i+1) % Vin.n]; mulsdm(sd0, sdm, v0->p); mulsdm(sd1, sdm, v1->p); if(sd0[j] < 0 && sd1[j] < 0) continue; if(sd0[j] >= 0 && sd1[j] >= 0) goto allin; d0 = (j&1) == 0? sd0[j]: -sd0[j]; d1 = (j&1) == 0? sd1[j]: -sd1[j]; perc = d0/(d0 - d1); lerpvertex(&v, v0, v1, perc); addvert(&Vout, v); if(sd1[j] >= 0){ allin: addvert(&Vout, dupvertex(v1)); } } cleanpoly(&Vin); if(j < 6-1) swappoly(&Vin, &Vout); } if(Vout.n < 2) cleanpoly(&Vout); else switch(p[0].type){ case PLine: p[0].v[0] = dupvertex(&Vout.v[0]); p[0].v[1] = eqpt3(Vout.v[0].p, Vout.v[1].p)? dupvertex(&Vout.v[2]): dupvertex(&Vout.v[1]); cleanpoly(&Vout); np = 1; break; case PTriangle: /* triangulate */ for(i = 0; i < Vout.n-2; i++, np++){ /* * when performing fan triangulation, indices 0 and 2 * are referenced on every triangle, so duplicate them * to avoid complications during rasterization. */ memmove(&p[np], &p[0], sizeof *p); p[np].v[0] = i < Vout.n-2-1? dupvertex(&Vout.v[0]): Vout.v[0]; p[np].v[1] = Vout.v[i+1]; p[np].v[2] = i < Vout.n-2-1? dupvertex(&Vout.v[i+2]): Vout.v[i+2]; } break; } free(Vout.v); free(Vin.v); return np; } static int ptisinside(int code) { return !code; } static int lineisinside(int code0, int code1) { return !(code0|code1); } static int lineisoutside(int code0, int code1) { return code0 & code1; } static int outcode(Point p, Rectangle r) { int code; code = 0; if(p.x < r.min.x) code |= CLIPL; if(p.x > r.max.x) code |= CLIPR; if(p.y < r.min.y) code |= CLIPT; if(p.y > r.max.y) code |= CLIPB; return code; } /* * Cohen-Sutherland rectangle-line clipping */ int rectclipline(Rectangle r, Point *p0, Point *p1) { int code0, code1; int Δx, Δy; double m; Δx = p1->x - p0->x; Δy = p1->y - p0->y; m = Δx == 0? 0: (double)Δy/Δx; for(;;){ code0 = outcode(*p0, r); code1 = outcode(*p1, r); if(lineisinside(code0, code1)) return 0; else if(lineisoutside(code0, code1)) return -1; if(ptisinside(code0)){ swappt(p0, p1); swapi(&code0, &code1); } if(code0 & CLIPL){ p0->y += (r.min.x - p0->x)*m; p0->x = r.min.x; }else if(code0 & CLIPR){ p0->y += (r.max.x - p0->x)*m; p0->x = r.max.x; }else if(code0 & CLIPT){ if(p0->x != p1->x && m != 0) p0->x += (r.min.y - p0->y)/m; p0->y = r.min.y; }else if(code0 & CLIPB){ if(p0->x != p1->x && m != 0) p0->x += (r.max.y - p0->y)/m; p0->y = r.max.y; } } }