ref: 75dfc00c40c6d811143b3dfaca865e3caa48db68
dir: /physics.c/
#include <u.h> #include <libc.h> #include <draw.h> #include "libgeometry/geometry.h" #include "dat.h" #include "fns.h" static double G = 6.674e-11; /* * Dynamics stepper */ static Point2 accel(GameState *s, double) { static double k = 15, b = 0.1; return Vec2(0, -k*s->p.y - b*s->v.y); } /* * XXX: remember to take thrust into account, based on user input. */ static Point2 accelship(Universe *u, Ship *s, double) { double g, d; d = vec2len(subpt2(u->star.p, s->p)); g = G*u->star.mass/(d*d); return mulpt2(normvec2(subpt2(u->star.p, s->p)), g); } static Point2 accelbullet(Universe *, Bullet *, double) { return Vec2(0,0); } static Derivative eval(GameState *s0, double t, double Δt, Derivative *d) { GameState s; Derivative res; s.p = addpt2(s0->p, mulpt2(d->dx, Δt)); s.v = addpt2(s0->v, mulpt2(d->dv, Δt)); res.dx = s.v; res.dv = accel(&s, t+Δt); return res; } /* * Explicit Euler Integrator */ static void euler0(GameState *s, double t, double Δt) { static Derivative ZD = {0}; Derivative d; d = eval(s, t, Δt, &ZD); s->p = addpt2(s->p, mulpt2(d.dx, Δt)); s->v = addpt2(s->v, mulpt2(d.dv, Δt)); } /* * Semi-implicit Euler Integrator */ static void euler1(GameState *s, double t, double Δt) { static Derivative ZD = {0}; Derivative d; d = eval(s, t, Δt, &ZD); s->v = addpt2(s->v, mulpt2(d.dv, Δt)); s->p = addpt2(s->p, mulpt2(s->v, Δt)); } /* * RK4 Integrator */ static void rk4(GameState *s, double t, double Δt) { static Derivative ZD = {0}; Derivative a, b, c, d; Point2 dxdt, dvdt; a = eval(s, t, 0, &ZD); b = eval(s, t, Δt/2, &a); c = eval(s, t, Δt/2, &b); d = eval(s, t, Δt, &c); dxdt = divpt2(addpt2(addpt2(a.dx, mulpt2(addpt2(b.dx, c.dx), 2)), d.dx), 6); dvdt = divpt2(addpt2(addpt2(a.dv, mulpt2(addpt2(b.dv, c.dv), 2)), d.dv), 6); s->p = addpt2(s->p, mulpt2(dxdt, Δt)); s->v = addpt2(s->v, mulpt2(dvdt, Δt)); } /* * The Integrator */ void integrate(GameState *s, double t, double Δt) { //euler0(s, t, Δt); //euler1(s, t, Δt); rk4(s, t, Δt); }