ref: 519d283e3ff39a129ed2b095a5f673f518291756
dir: /libfaad/specrec.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Software using this code must display the following message visibly in or ** on each copy of the software: ** "FAAD2 AAC/HE-AAC/HE-AACv2/DRM decoder (c) Nero AG, www.nero.com" ** in, for example, the about-box or help/startup screen. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: specrec.c,v 1.58 2006/05/07 18:09:03 menno Exp $ **/ /* Spectral reconstruction: - grouping/sectioning - inverse quantization - applying scalefactors */ #include "common.h" #include "structs.h" #include <string.h> #include <stdlib.h> #include "specrec.h" #include "filtbank.h" #include "syntax.h" #include "iq_table.h" #include "ms.h" #include "is.h" #include "pns.h" #include "tns.h" #include "drc.h" #include "lt_predict.h" #include "ic_predict.h" #ifdef SSR_DEC #include "ssr.h" #include "ssr_fb.h" #endif /* static function declarations */ static uint8_t quant_to_spec(NeAACDecHandle hDecoder, ic_stream *ics, int16_t *quant_data, real_t *spec_data, uint16_t frame_len); #ifdef LD_DEC ALIGN static const uint8_t num_swb_512_window[] = { 0, 0, 0, 36, 36, 37, 31, 31, 0, 0, 0, 0 }; ALIGN static const uint8_t num_swb_480_window[] = { 0, 0, 0, 35, 35, 37, 30, 30, 0, 0, 0, 0 }; #endif ALIGN static const uint8_t num_swb_960_window[] = { 40, 40, 45, 49, 49, 49, 46, 46, 42, 42, 42, 40 }; ALIGN static const uint8_t num_swb_1024_window[] = { 41, 41, 47, 49, 49, 51, 47, 47, 43, 43, 43, 40 }; ALIGN static const uint8_t num_swb_128_window[] = { 12, 12, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15 }; ALIGN static const uint16_t swb_offset_1024_96[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 96, 108, 120, 132, 144, 156, 172, 188, 212, 240, 276, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024 }; ALIGN static const uint16_t swb_offset_128_96[] = { 0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128 }; ALIGN static const uint16_t swb_offset_1024_64[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 100, 112, 124, 140, 156, 172, 192, 216, 240, 268, 304, 344, 384, 424, 464, 504, 544, 584, 624, 664, 704, 744, 784, 824, 864, 904, 944, 984, 1024 }; ALIGN static const uint16_t swb_offset_128_64[] = { 0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128 }; ALIGN static const uint16_t swb_offset_1024_48[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72, 80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 1024 }; #ifdef LD_DEC ALIGN static const uint16_t swb_offset_512_48[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 68, 76, 84, 92, 100, 112, 124, 136, 148, 164, 184, 208, 236, 268, 300, 332, 364, 396, 428, 460, 512 }; ALIGN static const uint16_t swb_offset_480_48[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72 ,80 ,88, 96, 108, 120, 132, 144, 156, 172, 188, 212, 240, 272, 304, 336, 368, 400, 432, 480 }; #endif ALIGN static const uint16_t swb_offset_128_48[] = { 0, 4, 8, 12, 16, 20, 28, 36, 44, 56, 68, 80, 96, 112, 128 }; ALIGN static const uint16_t swb_offset_1024_32[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72, 80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024 }; #ifdef LD_DEC ALIGN static const uint16_t swb_offset_512_32[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 96, 108, 120, 132, 144, 160, 176, 192, 212, 236, 260, 288, 320, 352, 384, 416, 448, 480, 512 }; ALIGN static const uint16_t swb_offset_480_32[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 88, 96, 104, 112, 124, 136, 148, 164, 180, 200, 224, 256, 288, 320, 352, 384, 416, 448, 480 }; #endif ALIGN static const uint16_t swb_offset_1024_24[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 136, 148, 160, 172, 188, 204, 220, 240, 260, 284, 308, 336, 364, 396, 432, 468, 508, 552, 600, 652, 704, 768, 832, 896, 960, 1024 }; #ifdef LD_DEC ALIGN static const uint16_t swb_offset_512_24[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68, 80, 92, 104, 120, 140, 164, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512 }; ALIGN static const uint16_t swb_offset_480_24[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68, 80, 92, 104, 120, 140, 164, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480 }; #endif ALIGN static const uint16_t swb_offset_128_24[] = { 0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 64, 76, 92, 108, 128 }; ALIGN static const uint16_t swb_offset_1024_16[] = { 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 212, 228, 244, 260, 280, 300, 320, 344, 368, 396, 424, 456, 492, 532, 572, 616, 664, 716, 772, 832, 896, 960, 1024 }; ALIGN static const uint16_t swb_offset_128_16[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 60, 72, 88, 108, 128 }; ALIGN static const uint16_t swb_offset_1024_8[] = { 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 172, 188, 204, 220, 236, 252, 268, 288, 308, 328, 348, 372, 396, 420, 448, 476, 508, 544, 580, 620, 664, 712, 764, 820, 880, 944, 1024 }; ALIGN static const uint16_t swb_offset_128_8[] = { 0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 60, 72, 88, 108, 128 }; ALIGN static const uint16_t *swb_offset_1024_window[] = { swb_offset_1024_96, /* 96000 */ swb_offset_1024_96, /* 88200 */ swb_offset_1024_64, /* 64000 */ swb_offset_1024_48, /* 48000 */ swb_offset_1024_48, /* 44100 */ swb_offset_1024_32, /* 32000 */ swb_offset_1024_24, /* 24000 */ swb_offset_1024_24, /* 22050 */ swb_offset_1024_16, /* 16000 */ swb_offset_1024_16, /* 12000 */ swb_offset_1024_16, /* 11025 */ swb_offset_1024_8 /* 8000 */ }; #ifdef LD_DEC ALIGN static const uint16_t *swb_offset_512_window[] = { 0, /* 96000 */ 0, /* 88200 */ 0, /* 64000 */ swb_offset_512_48, /* 48000 */ swb_offset_512_48, /* 44100 */ swb_offset_512_32, /* 32000 */ swb_offset_512_24, /* 24000 */ swb_offset_512_24, /* 22050 */ 0, /* 16000 */ 0, /* 12000 */ 0, /* 11025 */ 0 /* 8000 */ }; ALIGN static const uint16_t *swb_offset_480_window[] = { 0, /* 96000 */ 0, /* 88200 */ 0, /* 64000 */ swb_offset_480_48, /* 48000 */ swb_offset_480_48, /* 44100 */ swb_offset_480_32, /* 32000 */ swb_offset_480_24, /* 24000 */ swb_offset_480_24, /* 22050 */ 0, /* 16000 */ 0, /* 12000 */ 0, /* 11025 */ 0 /* 8000 */ }; #endif ALIGN static const uint16_t *swb_offset_128_window[] = { swb_offset_128_96, /* 96000 */ swb_offset_128_96, /* 88200 */ swb_offset_128_64, /* 64000 */ swb_offset_128_48, /* 48000 */ swb_offset_128_48, /* 44100 */ swb_offset_128_48, /* 32000 */ swb_offset_128_24, /* 24000 */ swb_offset_128_24, /* 22050 */ swb_offset_128_16, /* 16000 */ swb_offset_128_16, /* 12000 */ swb_offset_128_16, /* 11025 */ swb_offset_128_8 /* 8000 */ }; #define bit_set(A, B) ((A) & (1<<(B))) /* 4.5.2.3.4 */ /* - determine the number of windows in a window_sequence named num_windows - determine the number of window_groups named num_window_groups - determine the number of windows in each group named window_group_length[g] - determine the total number of scalefactor window bands named num_swb for the actual window type - determine swb_offset[swb], the offset of the first coefficient in scalefactor window band named swb of the window actually used - determine sect_sfb_offset[g][section],the offset of the first coefficient in section named section. This offset depends on window_sequence and scale_factor_grouping and is needed to decode the spectral_data(). */ uint8_t window_grouping_info(NeAACDecHandle hDecoder, ic_stream *ics) { uint8_t i, g; uint8_t sf_index = hDecoder->sf_index; switch (ics->window_sequence) { case ONLY_LONG_SEQUENCE: case LONG_START_SEQUENCE: case LONG_STOP_SEQUENCE: ics->num_windows = 1; ics->num_window_groups = 1; ics->window_group_length[ics->num_window_groups-1] = 1; #ifdef LD_DEC if (hDecoder->object_type == LD) { if (hDecoder->frameLength == 512) ics->num_swb = num_swb_512_window[sf_index]; else /* if (hDecoder->frameLength == 480) */ ics->num_swb = num_swb_480_window[sf_index]; } else { #endif if (hDecoder->frameLength == 1024) ics->num_swb = num_swb_1024_window[sf_index]; else /* if (hDecoder->frameLength == 960) */ ics->num_swb = num_swb_960_window[sf_index]; #ifdef LD_DEC } #endif if (ics->max_sfb > ics->num_swb) { return 32; } /* preparation of sect_sfb_offset for long blocks */ /* also copy the last value! */ #ifdef LD_DEC if (hDecoder->object_type == LD) { if (hDecoder->frameLength == 512) { for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_512_window[sf_index][i]; ics->swb_offset[i] = swb_offset_512_window[sf_index][i]; } } else /* if (hDecoder->frameLength == 480) */ { for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_480_window[sf_index][i]; ics->swb_offset[i] = swb_offset_480_window[sf_index][i]; } } ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength; ics->swb_offset[ics->num_swb] = hDecoder->frameLength; ics->swb_offset_max = hDecoder->frameLength; } else { #endif for (i = 0; i < ics->num_swb; i++) { ics->sect_sfb_offset[0][i] = swb_offset_1024_window[sf_index][i]; ics->swb_offset[i] = swb_offset_1024_window[sf_index][i]; } ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength; ics->swb_offset[ics->num_swb] = hDecoder->frameLength; ics->swb_offset_max = hDecoder->frameLength; #ifdef LD_DEC } #endif return 0; case EIGHT_SHORT_SEQUENCE: ics->num_windows = 8; ics->num_window_groups = 1; ics->window_group_length[ics->num_window_groups-1] = 1; ics->num_swb = num_swb_128_window[sf_index]; if (ics->max_sfb > ics->num_swb) { return 32; } for (i = 0; i < ics->num_swb; i++) ics->swb_offset[i] = swb_offset_128_window[sf_index][i]; ics->swb_offset[ics->num_swb] = hDecoder->frameLength/8; ics->swb_offset_max = hDecoder->frameLength/8; for (i = 0; i < ics->num_windows-1; i++) { if (bit_set(ics->scale_factor_grouping, 6-i) == 0) { ics->num_window_groups += 1; ics->window_group_length[ics->num_window_groups-1] = 1; } else { ics->window_group_length[ics->num_window_groups-1] += 1; } } /* preparation of sect_sfb_offset for short blocks */ for (g = 0; g < ics->num_window_groups; g++) { uint16_t width; uint8_t sect_sfb = 0; uint16_t offset = 0; for (i = 0; i < ics->num_swb; i++) { if (i+1 == ics->num_swb) { width = (hDecoder->frameLength/8) - swb_offset_128_window[sf_index][i]; } else { width = swb_offset_128_window[sf_index][i+1] - swb_offset_128_window[sf_index][i]; } width *= ics->window_group_length[g]; ics->sect_sfb_offset[g][sect_sfb++] = offset; offset += width; } ics->sect_sfb_offset[g][sect_sfb] = offset; } return 0; default: return 32; } } /* iquant() * /* output = sign(input)*abs(input)^(4/3) */ /**/ static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error) { #ifdef FIXED_POINT /* For FIXED_POINT the iq_table is prescaled by 3 bits (iq_table[]/8) */ /* BIG_IQ_TABLE allows you to use the full 8192 value table, if this is not * defined a 1026 value table and interpolation will be used */ #ifndef BIG_IQ_TABLE static const real_t errcorr[] = { REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0), REAL_CONST(4.0/8.0), REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0), REAL_CONST(0) }; real_t x1, x2; #endif int16_t sgn = 1; if (q < 0) { q = -q; sgn = -1; } if (q < IQ_TABLE_SIZE) { //#define IQUANT_PRINT #ifdef IQUANT_PRINT //printf("0x%.8X\n", sgn * tab[q]); printf("%d\n", sgn * tab[q]); #endif return sgn * tab[q]; } #ifndef BIG_IQ_TABLE if (q >= 8192) { *error = 17; return 0; } /* linear interpolation */ x1 = tab[q>>3]; x2 = tab[(q>>3) + 1]; return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1); #else *error = 17; return 0; #endif #else if (q < 0) { /* tab contains a value for all possible q [0,8192] */ if (-q < IQ_TABLE_SIZE) return -tab[-q]; *error = 17; return 0; } else { /* tab contains a value for all possible q [0,8192] */ if (q < IQ_TABLE_SIZE) return tab[q]; *error = 17; return 0; } #endif } #ifndef FIXED_POINT ALIGN static const real_t pow2sf_tab[] = { 2.9802322387695313E-008, 5.9604644775390625E-008, 1.1920928955078125E-007, 2.384185791015625E-007, 4.76837158203125E-007, 9.5367431640625E-007, 1.9073486328125E-006, 3.814697265625E-006, 7.62939453125E-006, 1.52587890625E-005, 3.0517578125E-005, 6.103515625E-005, 0.0001220703125, 0.000244140625, 0.00048828125, 0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0, 65536.0, 131072.0, 262144.0, 524288.0, 1048576.0, 2097152.0, 4194304.0, 8388608.0, 16777216.0, 33554432.0, 67108864.0, 134217728.0, 268435456.0, 536870912.0, 1073741824.0, 2147483648.0, 4294967296.0, 8589934592.0, 17179869184.0, 34359738368.0, 68719476736.0, 137438953472.0, 274877906944.0 }; #endif /* quant_to_spec: perform dequantisation and scaling * and in case of short block it also does the deinterleaving */ /* For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, window_group_length[0] = 1) the spectral data is in ascending spectral order. For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the grouping in the following manner: - Groups are ordered sequentially - Within a group, a scalefactor band consists of the spectral data of all grouped SHORT_WINDOWs for the associated scalefactor window band. To clarify via example, the length of a group is in the range of one to eight SHORT_WINDOWs. - If there are eight groups each with length one (num_window_groups = 8, window_group_length[0..7] = 1), the result is a sequence of eight spectra, each in ascending spectral order. - If there is only one group with length eight (num_window_groups = 1, window_group_length[0] = 8), the result is that spectral data of all eight SHORT_WINDOWs is interleaved by scalefactor window bands. - Within a scalefactor window band, the coefficients are in ascending spectral order. */ static uint8_t quant_to_spec(NeAACDecHandle hDecoder, ic_stream *ics, int16_t *quant_data, real_t *spec_data, uint16_t frame_len) { ALIGN static const real_t pow2_table[] = { COEF_CONST(1.0), COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */ COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */ COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */ }; const real_t *tab = iq_table; uint8_t g, sfb, win; uint16_t width, bin, k, gindex, wa, wb; uint8_t error = 0; /* Init error flag */ #ifndef FIXED_POINT real_t scf; #endif k = 0; gindex = 0; for (g = 0; g < ics->num_window_groups; g++) { uint16_t j = 0; uint16_t gincrease = 0; uint16_t win_inc = ics->swb_offset[ics->num_swb]; for (sfb = 0; sfb < ics->num_swb; sfb++) { int32_t exp, frac; width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb]; /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */ /* just ignore them */ if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255) { exp = 0; frac = 0; } else { /* ics->scale_factors[g][sfb] must be between 0 and 255 */ exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2; /* frac must always be > 0 */ frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3; } #ifdef FIXED_POINT exp -= 25; /* IMDCT pre-scaling */ if (hDecoder->object_type == LD) { exp -= 6 /*9*/; } else { if (ics->window_sequence == EIGHT_SHORT_SEQUENCE) exp -= 4 /*7*/; else exp -= 7 /*10*/; } #endif wa = gindex + j; #ifndef FIXED_POINT scf = pow2sf_tab[exp/*+25*/] * pow2_table[frac]; #endif for (win = 0; win < ics->window_group_length[g]; win++) { for (bin = 0; bin < width; bin += 4) { #ifndef FIXED_POINT wb = wa + bin; spec_data[wb+0] = iquant(quant_data[k+0], tab, &error) * scf; spec_data[wb+1] = iquant(quant_data[k+1], tab, &error) * scf; spec_data[wb+2] = iquant(quant_data[k+2], tab, &error) * scf; spec_data[wb+3] = iquant(quant_data[k+3], tab, &error) * scf; #else real_t iq0 = iquant(quant_data[k+0], tab, &error); real_t iq1 = iquant(quant_data[k+1], tab, &error); real_t iq2 = iquant(quant_data[k+2], tab, &error); real_t iq3 = iquant(quant_data[k+3], tab, &error); wb = wa + bin; if (exp < 0) { spec_data[wb+0] = iq0 >>= -exp; spec_data[wb+1] = iq1 >>= -exp; spec_data[wb+2] = iq2 >>= -exp; spec_data[wb+3] = iq3 >>= -exp; } else { spec_data[wb+0] = iq0 <<= exp; spec_data[wb+1] = iq1 <<= exp; spec_data[wb+2] = iq2 <<= exp; spec_data[wb+3] = iq3 <<= exp; } if (frac != 0) { spec_data[wb+0] = MUL_C(spec_data[wb+0],pow2_table[frac]); spec_data[wb+1] = MUL_C(spec_data[wb+1],pow2_table[frac]); spec_data[wb+2] = MUL_C(spec_data[wb+2],pow2_table[frac]); spec_data[wb+3] = MUL_C(spec_data[wb+3],pow2_table[frac]); } //#define SCFS_PRINT #ifdef SCFS_PRINT printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+0]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+1]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+2]); printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+3]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+0]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+1]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+2]); //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+3]); #endif #endif gincrease += 4; k += 4; } wa += win_inc; } j += width; } gindex += gincrease; } return error; } static uint8_t allocate_single_channel(NeAACDecHandle hDecoder, uint8_t channel, uint8_t output_channels) { int mul = 1; #ifdef MAIN_DEC /* MAIN object type prediction */ if (hDecoder->object_type == MAIN) { /* allocate the state only when needed */ if (hDecoder->pred_stat[channel] != NULL) { faad_free(hDecoder->pred_stat[channel]); hDecoder->pred_stat[channel] = NULL; } hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state)); reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength); } #endif #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { /* allocate the state only when needed */ if (hDecoder->lt_pred_stat[channel] != NULL) { faad_free(hDecoder->lt_pred_stat[channel]); hDecoder->lt_pred_stat[channel] = NULL; } hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t)); memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t)); } #endif if (hDecoder->time_out[channel] != NULL) { faad_free(hDecoder->time_out[channel]); hDecoder->time_out[channel] = NULL; } { mul = 1; #ifdef SBR_DEC hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0; if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) { /* SBR requires 2 times as much output data */ mul = 2; hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1; } #endif hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t)); } #if (defined(PS_DEC) || defined(DRM_PS)) if (output_channels == 2) { if (hDecoder->time_out[channel+1] != NULL) { faad_free(hDecoder->time_out[channel+1]); hDecoder->time_out[channel+1] = NULL; } hDecoder->time_out[channel+1] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[channel+1], 0, mul*hDecoder->frameLength*sizeof(real_t)); } #endif if (hDecoder->fb_intermed[channel] != NULL) { faad_free(hDecoder->fb_intermed[channel]); hDecoder->fb_intermed[channel] = NULL; } hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t)); #ifdef SSR_DEC if (hDecoder->object_type == SSR) { if (hDecoder->ssr_overlap[channel] == NULL) { hDecoder->ssr_overlap[channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->ssr_overlap[channel], 0, 2*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->prev_fmd[channel] == NULL) { uint16_t k; hDecoder->prev_fmd[channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); for (k = 0; k < 2*hDecoder->frameLength; k++) hDecoder->prev_fmd[channel][k] = REAL_CONST(-1); } } #endif return 0; } static uint8_t allocate_channel_pair(NeAACDecHandle hDecoder, uint8_t channel, uint8_t paired_channel) { int mul = 1; #ifdef MAIN_DEC /* MAIN object type prediction */ if (hDecoder->object_type == MAIN) { /* allocate the state only when needed */ if (hDecoder->pred_stat[channel] == NULL) { hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state)); reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength); } if (hDecoder->pred_stat[paired_channel] == NULL) { hDecoder->pred_stat[paired_channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state)); reset_all_predictors(hDecoder->pred_stat[paired_channel], hDecoder->frameLength); } } #endif #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { /* allocate the state only when needed */ if (hDecoder->lt_pred_stat[channel] == NULL) { hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t)); memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t)); } if (hDecoder->lt_pred_stat[paired_channel] == NULL) { hDecoder->lt_pred_stat[paired_channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t)); memset(hDecoder->lt_pred_stat[paired_channel], 0, hDecoder->frameLength*4 * sizeof(int16_t)); } } #endif if (hDecoder->time_out[channel] == NULL) { mul = 1; #ifdef SBR_DEC hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0; if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) { /* SBR requires 2 times as much output data */ mul = 2; hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1; } #endif hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->time_out[paired_channel] == NULL) { hDecoder->time_out[paired_channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[paired_channel], 0, mul*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->fb_intermed[channel] == NULL) { hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->fb_intermed[paired_channel] == NULL) { hDecoder->fb_intermed[paired_channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->fb_intermed[paired_channel], 0, hDecoder->frameLength*sizeof(real_t)); } #ifdef SSR_DEC if (hDecoder->object_type == SSR) { if (hDecoder->ssr_overlap[cpe->channel] == NULL) { hDecoder->ssr_overlap[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->ssr_overlap[cpe->channel], 0, 2*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->ssr_overlap[cpe->paired_channel] == NULL) { hDecoder->ssr_overlap[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->ssr_overlap[cpe->paired_channel], 0, 2*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->prev_fmd[cpe->channel] == NULL) { uint16_t k; hDecoder->prev_fmd[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); for (k = 0; k < 2*hDecoder->frameLength; k++) hDecoder->prev_fmd[cpe->channel][k] = REAL_CONST(-1); } if (hDecoder->prev_fmd[cpe->paired_channel] == NULL) { uint16_t k; hDecoder->prev_fmd[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); for (k = 0; k < 2*hDecoder->frameLength; k++) hDecoder->prev_fmd[cpe->paired_channel][k] = REAL_CONST(-1); } } #endif return 0; } uint8_t reconstruct_single_channel(NeAACDecHandle hDecoder, ic_stream *ics, element *sce, int16_t *spec_data) { uint8_t retval; int output_channels; ALIGN real_t spec_coef[1024]; #ifdef PROFILE int64_t count = faad_get_ts(); #endif /* always allocate 2 channels, PS can always "suddenly" turn up */ #if ( (defined(DRM) && defined(DRM_PS)) ) output_channels = 2; #elif defined(PS_DEC) if (hDecoder->ps_used[hDecoder->fr_ch_ele]) output_channels = 2; else output_channels = 1; #else output_channels = 1; #endif if (hDecoder->element_output_channels[hDecoder->fr_ch_ele] == 0) { /* element_output_channels not set yet */ hDecoder->element_output_channels[hDecoder->fr_ch_ele] = output_channels; } else if (hDecoder->element_output_channels[hDecoder->fr_ch_ele] != output_channels) { /* element inconsistency */ /* this only happens if PS is actually found but not in the first frame * this means that there is only 1 bitstream element! */ /* reset the allocation */ hDecoder->element_alloced[hDecoder->fr_ch_ele] = 0; hDecoder->element_output_channels[hDecoder->fr_ch_ele] = output_channels; //return 21; } if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0) { retval = allocate_single_channel(hDecoder, sce->channel, output_channels); if (retval > 0) return retval; hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1; } /* dequantisation and scaling */ retval = quant_to_spec(hDecoder, ics, spec_data, spec_coef, hDecoder->frameLength); if (retval > 0) return retval; #ifdef PROFILE count = faad_get_ts() - count; hDecoder->requant_cycles += count; #endif /* pns decoding */ pns_decode(ics, NULL, spec_coef, NULL, hDecoder->frameLength, 0, hDecoder->object_type, &(hDecoder->__r1), &(hDecoder->__r2)); #ifdef MAIN_DEC /* MAIN object type prediction */ if (hDecoder->object_type == MAIN) { /* intra channel prediction */ ic_prediction(ics, spec_coef, hDecoder->pred_stat[sce->channel], hDecoder->frameLength, hDecoder->sf_index); /* In addition, for scalefactor bands coded by perceptual noise substitution the predictors belonging to the corresponding spectral coefficients are reset. */ pns_reset_pred_state(ics, hDecoder->pred_stat[sce->channel]); } #endif #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { #ifdef LD_DEC if (hDecoder->object_type == LD) { if (ics->ltp.data_present) { if (ics->ltp.lag_update) hDecoder->ltp_lag[sce->channel] = ics->ltp.lag; } ics->ltp.lag = hDecoder->ltp_lag[sce->channel]; } #endif /* long term prediction */ lt_prediction(ics, &(ics->ltp), spec_coef, hDecoder->lt_pred_stat[sce->channel], hDecoder->fb, ics->window_shape, hDecoder->window_shape_prev[sce->channel], hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength); } #endif /* tns decoding */ tns_decode_frame(ics, &(ics->tns), hDecoder->sf_index, hDecoder->object_type, spec_coef, hDecoder->frameLength); /* drc decoding */ if (hDecoder->drc->present) { if (!hDecoder->drc->exclude_mask[sce->channel] || !hDecoder->drc->excluded_chns_present) drc_decode(hDecoder->drc, spec_coef); } /* filter bank */ #ifdef SSR_DEC if (hDecoder->object_type != SSR) { #endif ifilter_bank(hDecoder->fb, ics->window_sequence, ics->window_shape, hDecoder->window_shape_prev[sce->channel], spec_coef, hDecoder->time_out[sce->channel], hDecoder->fb_intermed[sce->channel], hDecoder->object_type, hDecoder->frameLength); #ifdef SSR_DEC } else { ssr_decode(&(ics->ssr), hDecoder->fb, ics->window_sequence, ics->window_shape, hDecoder->window_shape_prev[sce->channel], spec_coef, hDecoder->time_out[sce->channel], hDecoder->ssr_overlap[sce->channel], hDecoder->ipqf_buffer[sce->channel], hDecoder->prev_fmd[sce->channel], hDecoder->frameLength); } #endif /* save window shape for next frame */ hDecoder->window_shape_prev[sce->channel] = ics->window_shape; #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { lt_update_state(hDecoder->lt_pred_stat[sce->channel], hDecoder->time_out[sce->channel], hDecoder->fb_intermed[sce->channel], hDecoder->frameLength, hDecoder->object_type); } #endif #ifdef SBR_DEC if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) && hDecoder->sbr_alloced[hDecoder->fr_ch_ele]) { int ele = hDecoder->fr_ch_ele; int ch = sce->channel; /* following case can happen when forceUpSampling == 1 */ if (hDecoder->sbr[ele] == NULL) { hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength, hDecoder->element_id[ele], 2*get_sample_rate(hDecoder->sf_index), hDecoder->downSampledSBR #ifdef DRM , 0 #endif ); } if (sce->ics1.window_sequence == EIGHT_SHORT_SEQUENCE) hDecoder->sbr[ele]->maxAACLine = 8*min(sce->ics1.swb_offset[max(sce->ics1.max_sfb-1, 0)], sce->ics1.swb_offset_max); else hDecoder->sbr[ele]->maxAACLine = min(sce->ics1.swb_offset[max(sce->ics1.max_sfb-1, 0)], sce->ics1.swb_offset_max); /* check if any of the PS tools is used */ #if (defined(PS_DEC) || defined(DRM_PS)) if (hDecoder->ps_used[ele] == 0) { #endif retval = sbrDecodeSingleFrame(hDecoder->sbr[ele], hDecoder->time_out[ch], hDecoder->postSeekResetFlag, hDecoder->downSampledSBR); #if (defined(PS_DEC) || defined(DRM_PS)) } else { retval = sbrDecodeSingleFramePS(hDecoder->sbr[ele], hDecoder->time_out[ch], hDecoder->time_out[ch+1], hDecoder->postSeekResetFlag, hDecoder->downSampledSBR); } #endif if (retval > 0) return retval; } else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) && !hDecoder->sbr_alloced[hDecoder->fr_ch_ele]) { return 23; } #endif /* copy L to R when no PS is used */ #if (defined(PS_DEC) || defined(DRM_PS)) if ((hDecoder->ps_used[hDecoder->fr_ch_ele] == 0) && (hDecoder->element_output_channels[hDecoder->fr_ch_ele] == 2)) { int ele = hDecoder->fr_ch_ele; int ch = sce->channel; int frame_size = (hDecoder->sbr_alloced[ele]) ? 2 : 1; frame_size *= hDecoder->frameLength*sizeof(real_t); memcpy(hDecoder->time_out[ch+1], hDecoder->time_out[ch], frame_size); } #endif return 0; } uint8_t reconstruct_channel_pair(NeAACDecHandle hDecoder, ic_stream *ics1, ic_stream *ics2, element *cpe, int16_t *spec_data1, int16_t *spec_data2) { uint8_t retval; ALIGN real_t spec_coef1[1024]; ALIGN real_t spec_coef2[1024]; #ifdef PROFILE int64_t count = faad_get_ts(); #endif if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0) { retval = allocate_channel_pair(hDecoder, cpe->channel, (uint8_t)cpe->paired_channel); if (retval > 0) return retval; hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1; } /* dequantisation and scaling */ retval = quant_to_spec(hDecoder, ics1, spec_data1, spec_coef1, hDecoder->frameLength); if (retval > 0) return retval; retval = quant_to_spec(hDecoder, ics2, spec_data2, spec_coef2, hDecoder->frameLength); if (retval > 0) return retval; #ifdef PROFILE count = faad_get_ts() - count; hDecoder->requant_cycles += count; #endif /* pns decoding */ if (ics1->ms_mask_present) { pns_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength, 1, hDecoder->object_type, &(hDecoder->__r1), &(hDecoder->__r2)); } else { pns_decode(ics1, NULL, spec_coef1, NULL, hDecoder->frameLength, 0, hDecoder->object_type, &(hDecoder->__r1), &(hDecoder->__r2)); pns_decode(ics2, NULL, spec_coef2, NULL, hDecoder->frameLength, 0, hDecoder->object_type, &(hDecoder->__r1), &(hDecoder->__r2)); } /* mid/side decoding */ ms_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength); #if 0 { int i; for (i = 0; i < 1024; i++) { //printf("%d\n", spec_coef1[i]); printf("0x%.8X\n", spec_coef1[i]); } for (i = 0; i < 1024; i++) { //printf("%d\n", spec_coef2[i]); printf("0x%.8X\n", spec_coef2[i]); } } #endif /* intensity stereo decoding */ is_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength); #if 0 { int i; for (i = 0; i < 1024; i++) { printf("%d\n", spec_coef1[i]); //printf("0x%.8X\n", spec_coef1[i]); } for (i = 0; i < 1024; i++) { printf("%d\n", spec_coef2[i]); //printf("0x%.8X\n", spec_coef2[i]); } } #endif #ifdef MAIN_DEC /* MAIN object type prediction */ if (hDecoder->object_type == MAIN) { /* intra channel prediction */ ic_prediction(ics1, spec_coef1, hDecoder->pred_stat[cpe->channel], hDecoder->frameLength, hDecoder->sf_index); ic_prediction(ics2, spec_coef2, hDecoder->pred_stat[cpe->paired_channel], hDecoder->frameLength, hDecoder->sf_index); /* In addition, for scalefactor bands coded by perceptual noise substitution the predictors belonging to the corresponding spectral coefficients are reset. */ pns_reset_pred_state(ics1, hDecoder->pred_stat[cpe->channel]); pns_reset_pred_state(ics2, hDecoder->pred_stat[cpe->paired_channel]); } #endif #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { ltp_info *ltp1 = &(ics1->ltp); ltp_info *ltp2 = (cpe->common_window) ? &(ics2->ltp2) : &(ics2->ltp); #ifdef LD_DEC if (hDecoder->object_type == LD) { if (ltp1->data_present) { if (ltp1->lag_update) hDecoder->ltp_lag[cpe->channel] = ltp1->lag; } ltp1->lag = hDecoder->ltp_lag[cpe->channel]; if (ltp2->data_present) { if (ltp2->lag_update) hDecoder->ltp_lag[cpe->paired_channel] = ltp2->lag; } ltp2->lag = hDecoder->ltp_lag[cpe->paired_channel]; } #endif /* long term prediction */ lt_prediction(ics1, ltp1, spec_coef1, hDecoder->lt_pred_stat[cpe->channel], hDecoder->fb, ics1->window_shape, hDecoder->window_shape_prev[cpe->channel], hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength); lt_prediction(ics2, ltp2, spec_coef2, hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->fb, ics2->window_shape, hDecoder->window_shape_prev[cpe->paired_channel], hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength); } #endif /* tns decoding */ tns_decode_frame(ics1, &(ics1->tns), hDecoder->sf_index, hDecoder->object_type, spec_coef1, hDecoder->frameLength); tns_decode_frame(ics2, &(ics2->tns), hDecoder->sf_index, hDecoder->object_type, spec_coef2, hDecoder->frameLength); /* drc decoding */ if (hDecoder->drc->present) { if (!hDecoder->drc->exclude_mask[cpe->channel] || !hDecoder->drc->excluded_chns_present) drc_decode(hDecoder->drc, spec_coef1); if (!hDecoder->drc->exclude_mask[cpe->paired_channel] || !hDecoder->drc->excluded_chns_present) drc_decode(hDecoder->drc, spec_coef2); } /* filter bank */ #ifdef SSR_DEC if (hDecoder->object_type != SSR) { #endif ifilter_bank(hDecoder->fb, ics1->window_sequence, ics1->window_shape, hDecoder->window_shape_prev[cpe->channel], spec_coef1, hDecoder->time_out[cpe->channel], hDecoder->fb_intermed[cpe->channel], hDecoder->object_type, hDecoder->frameLength); ifilter_bank(hDecoder->fb, ics2->window_sequence, ics2->window_shape, hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2, hDecoder->time_out[cpe->paired_channel], hDecoder->fb_intermed[cpe->paired_channel], hDecoder->object_type, hDecoder->frameLength); #ifdef SSR_DEC } else { ssr_decode(&(ics1->ssr), hDecoder->fb, ics1->window_sequence, ics1->window_shape, hDecoder->window_shape_prev[cpe->channel], spec_coef1, hDecoder->time_out[cpe->channel], hDecoder->ssr_overlap[cpe->channel], hDecoder->ipqf_buffer[cpe->channel], hDecoder->prev_fmd[cpe->channel], hDecoder->frameLength); ssr_decode(&(ics2->ssr), hDecoder->fb, ics2->window_sequence, ics2->window_shape, hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2, hDecoder->time_out[cpe->paired_channel], hDecoder->ssr_overlap[cpe->paired_channel], hDecoder->ipqf_buffer[cpe->paired_channel], hDecoder->prev_fmd[cpe->paired_channel], hDecoder->frameLength); } #endif /* save window shape for next frame */ hDecoder->window_shape_prev[cpe->channel] = ics1->window_shape; hDecoder->window_shape_prev[cpe->paired_channel] = ics2->window_shape; #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { lt_update_state(hDecoder->lt_pred_stat[cpe->channel], hDecoder->time_out[cpe->channel], hDecoder->fb_intermed[cpe->channel], hDecoder->frameLength, hDecoder->object_type); lt_update_state(hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->time_out[cpe->paired_channel], hDecoder->fb_intermed[cpe->paired_channel], hDecoder->frameLength, hDecoder->object_type); } #endif #ifdef SBR_DEC if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) && hDecoder->sbr_alloced[hDecoder->fr_ch_ele]) { int ele = hDecoder->fr_ch_ele; int ch0 = cpe->channel; int ch1 = cpe->paired_channel; /* following case can happen when forceUpSampling == 1 */ if (hDecoder->sbr[ele] == NULL) { hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength, hDecoder->element_id[ele], 2*get_sample_rate(hDecoder->sf_index), hDecoder->downSampledSBR #ifdef DRM , 0 #endif ); } if (cpe->ics1.window_sequence == EIGHT_SHORT_SEQUENCE) hDecoder->sbr[ele]->maxAACLine = 8*min(cpe->ics1.swb_offset[max(cpe->ics1.max_sfb-1, 0)], cpe->ics1.swb_offset_max); else hDecoder->sbr[ele]->maxAACLine = min(cpe->ics1.swb_offset[max(cpe->ics1.max_sfb-1, 0)], cpe->ics1.swb_offset_max); retval = sbrDecodeCoupleFrame(hDecoder->sbr[ele], hDecoder->time_out[ch0], hDecoder->time_out[ch1], hDecoder->postSeekResetFlag, hDecoder->downSampledSBR); if (retval > 0) return retval; } else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) && !hDecoder->sbr_alloced[hDecoder->fr_ch_ele]) { return 23; } #endif return 0; }