ref: 7da4a83b230d069a9d731b1e64f6e6b52802576a
dir: /libfaad/sbr_hfgen.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: sbr_hfgen.c,v 1.26 2007/11/01 12:33:35 menno Exp $ **/ /* High Frequency generation */ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include "sbr_syntax.h" #include "sbr_hfgen.h" #include "sbr_fbt.h" /* static function declarations */ #ifdef SBR_LOW_POWER static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, real_t *rxx); static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg); #else static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, uint8_t k); #endif static void calc_chirp_factors(sbr_info *sbr, uint8_t ch); static void patch_construction(sbr_info *sbr); void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], qmf_t Xhigh[MAX_NTSRHFG][64] #ifdef SBR_LOW_POWER ,real_t *deg #endif ,uint8_t ch) { uint8_t l, i, x; ALIGN complex_t alpha_0[64], alpha_1[64]; #ifdef SBR_LOW_POWER ALIGN real_t rxx[64]; #endif uint8_t offset = sbr->tHFAdj; uint8_t first = sbr->t_E[ch][0]; uint8_t last = sbr->t_E[ch][sbr->L_E[ch]]; calc_chirp_factors(sbr, ch); #ifdef SBR_LOW_POWER memset(deg, 0, 64*sizeof(real_t)); #endif if ((ch == 0) && (sbr->Reset)) patch_construction(sbr); /* calculate the prediction coefficients */ #ifdef SBR_LOW_POWER calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx); calc_aliasing_degree(sbr, rxx, deg); #endif /* actual HF generation */ for (i = 0; i < sbr->noPatches; i++) { for (x = 0; x < sbr->patchNoSubbands[i]; x++) { real_t a0_r, a0_i, a1_r, a1_i; real_t bw, bw2; uint8_t q, p, k, g; /* find the low and high band for patching */ k = sbr->kx + x; for (q = 0; q < i; q++) { k += sbr->patchNoSubbands[q]; } p = sbr->patchStartSubband[i] + x; #ifdef SBR_LOW_POWER if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) deg[k] = deg[p]; else deg[k] = 0; #endif g = sbr->table_map_k_to_g[k]; bw = sbr->bwArray[ch][g]; bw2 = MUL_C(bw, bw); /* do the patching */ /* with or without filtering */ if (bw2 > 0) { real_t temp1_r, temp2_r, temp3_r; #ifndef SBR_LOW_POWER real_t temp1_i, temp2_i, temp3_i; calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p); #endif a0_r = MUL_C(RE(alpha_0[p]), bw); a1_r = MUL_C(RE(alpha_1[p]), bw2); #ifndef SBR_LOW_POWER a0_i = MUL_C(IM(alpha_0[p]), bw); a1_i = MUL_C(IM(alpha_1[p]), bw2); #endif temp2_r = QMF_RE(Xlow[first - 2 + offset][p]); temp3_r = QMF_RE(Xlow[first - 1 + offset][p]); #ifndef SBR_LOW_POWER temp2_i = QMF_IM(Xlow[first - 2 + offset][p]); temp3_i = QMF_IM(Xlow[first - 1 + offset][p]); #endif for (l = first; l < last; l++) { temp1_r = temp2_r; temp2_r = temp3_r; temp3_r = QMF_RE(Xlow[l + offset][p]); #ifndef SBR_LOW_POWER temp1_i = temp2_i; temp2_i = temp3_i; temp3_i = QMF_IM(Xlow[l + offset][p]); #endif #ifdef SBR_LOW_POWER QMF_RE(Xhigh[l + offset][k]) = temp3_r +(MUL_R(a0_r, temp2_r) + MUL_R(a1_r, temp1_r)); #else QMF_RE(Xhigh[l + offset][k]) = temp3_r +(MUL_R(a0_r, temp2_r) - MUL_R(a0_i, temp2_i) + MUL_R(a1_r, temp1_r) - MUL_R(a1_i, temp1_i)); QMF_IM(Xhigh[l + offset][k]) = temp3_i +(MUL_R(a0_i, temp2_r) + MUL_R(a0_r, temp2_i) + MUL_R(a1_i, temp1_r) + MUL_R(a1_r, temp1_i)); #endif } } else { for (l = first; l < last; l++) { QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]); #ifndef SBR_LOW_POWER QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]); #endif } } } } if (sbr->Reset) { limiter_frequency_table(sbr); } } typedef struct { complex_t r01; complex_t r02; complex_t r11; complex_t r12; complex_t r22; real_t det; } acorr_coef; #ifdef SBR_LOW_POWER static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], uint8_t bd, uint8_t len) { real_t r01 = 0, r02 = 0, r11 = 0; int8_t j; uint8_t offset = sbr->tHFAdj; #ifdef FIXED_POINT const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); uint32_t maxi = 0; uint32_t pow2, exp; #else const real_t rel = 1 / (1 + 1e-6f); #endif #ifdef FIXED_POINT mask = 0; for (j = (offset-2); j < (len + offset); j++) { real_t x; x = QMF_RE(buffer[j][bd])>>REAL_BITS; mask |= x ^ (x >> 31); } exp = wl_min_lzc(mask); /* improves accuracy */ if (exp > 0) exp -= 1; for (j = offset; j < len + offset; j++) { real_t buf_j = ((QMF_RE(buffer[j][bd])+(1<<(exp-1)))>>exp); real_t buf_j_1 = ((QMF_RE(buffer[j-1][bd])+(1<<(exp-1)))>>exp); real_t buf_j_2 = ((QMF_RE(buffer[j-2][bd])+(1<<(exp-1)))>>exp); /* normalisation with rounding */ r01 += MUL_R(buf_j, buf_j_1); r02 += MUL_R(buf_j, buf_j_2); r11 += MUL_R(buf_j_1, buf_j_1); } RE(ac->r12) = r01 - MUL_R(((QMF_RE(buffer[len+offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + MUL_R(((QMF_RE(buffer[offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); RE(ac->r22) = r11 - MUL_R(((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + MUL_R(((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); #else for (j = offset; j < len + offset; j++) { r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]); r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]); r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]); } RE(ac->r12) = r01 - QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]); RE(ac->r22) = r11 - QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) + QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]); #endif RE(ac->r01) = r01; RE(ac->r02) = r02; RE(ac->r11) = r11; ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel); } #else static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], uint8_t bd, uint8_t len) { real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0; real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i; #ifdef FIXED_POINT const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); uint32_t mask, exp; real_t pow2_to_exp; #else const real_t rel = 1 / (1 + 1e-6f); #endif int8_t j; uint8_t offset = sbr->tHFAdj; #ifdef FIXED_POINT mask = 0; for (j = (offset-2); j < (len + offset); j++) { real_t x; x = QMF_RE(buffer[j][bd])>>REAL_BITS; mask |= x ^ (x >> 31); x = QMF_IM(buffer[j][bd])>>REAL_BITS; mask |= x ^ (x >> 31); } exp = wl_min_lzc(mask); /* improves accuracy */ if (exp > 0) exp -= 1; pow2_to_exp = 1<<(exp-1); temp2_r = (QMF_RE(buffer[offset-2][bd]) + pow2_to_exp) >> exp; temp2_i = (QMF_IM(buffer[offset-2][bd]) + pow2_to_exp) >> exp; temp3_r = (QMF_RE(buffer[offset-1][bd]) + pow2_to_exp) >> exp; temp3_i = (QMF_IM(buffer[offset-1][bd]) + pow2_to_exp) >> exp; // Save these because they are needed after loop temp4_r = temp2_r; temp4_i = temp2_i; temp5_r = temp3_r; temp5_i = temp3_i; for (j = offset; j < len + offset; j++) { temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp; temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp; r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i); r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i); r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i); r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i); r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i); } // These are actual values in temporary variable at this point // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; RE(ac->r12) = r01r - (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) + (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i)); IM(ac->r12) = r01i - (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) + (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i)); RE(ac->r22) = r11r - (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) + (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i)); #else temp2_r = QMF_RE(buffer[offset-2][bd]); temp2_i = QMF_IM(buffer[offset-2][bd]); temp3_r = QMF_RE(buffer[offset-1][bd]); temp3_i = QMF_IM(buffer[offset-1][bd]); // Save these because they are needed after loop temp4_r = temp2_r; temp4_i = temp2_i; temp5_r = temp3_r; temp5_i = temp3_i; for (j = offset; j < len + offset; j++) { temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd]; temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd]; temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd]; temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd]; temp3_r = QMF_RE(buffer[j][bd]); temp3_i = QMF_IM(buffer[j][bd]); r01r += temp3_r * temp2_r + temp3_i * temp2_i; r01i += temp3_i * temp2_r - temp3_r * temp2_i; r02r += temp3_r * temp1_r + temp3_i * temp1_i; r02i += temp3_i * temp1_r - temp3_r * temp1_i; r11r += temp2_r * temp2_r + temp2_i * temp2_i; } // These are actual values in temporary variable at this point // temp1_r = QMF_RE(buffer[len+offset-1-2][bd]; // temp1_i = QMF_IM(buffer[len+offset-1-2][bd]; // temp2_r = QMF_RE(buffer[len+offset-1-1][bd]; // temp2_i = QMF_IM(buffer[len+offset-1-1][bd]; // temp3_r = QMF_RE(buffer[len+offset-1][bd]); // temp3_i = QMF_IM(buffer[len+offset-1][bd]); // temp4_r = QMF_RE(buffer[offset-2][bd]); // temp4_i = QMF_IM(buffer[offset-2][bd]); // temp5_r = QMF_RE(buffer[offset-1][bd]); // temp5_i = QMF_IM(buffer[offset-1][bd]); RE(ac->r12) = r01r - (temp3_r * temp2_r + temp3_i * temp2_i) + (temp5_r * temp4_r + temp5_i * temp4_i); IM(ac->r12) = r01i - (temp3_i * temp2_r - temp3_r * temp2_i) + (temp5_i * temp4_r - temp5_r * temp4_i); RE(ac->r22) = r11r - (temp2_r * temp2_r + temp2_i * temp2_i) + (temp4_r * temp4_r + temp4_i * temp4_i); #endif RE(ac->r01) = r01r; IM(ac->r01) = r01i; RE(ac->r02) = r02r; IM(ac->r02) = r02i; RE(ac->r11) = r11r; ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12)))); } #endif /* calculate linear prediction coefficients using the covariance method */ #ifndef SBR_LOW_POWER static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, uint8_t k) { real_t tmp; acorr_coef ac; auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); if (ac.det == 0) { RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } else { #ifdef FIXED_POINT tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); RE(alpha_1[k]) = DIV_R(tmp, ac.det); tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); IM(alpha_1[k]) = DIV_R(tmp, ac.det); #else tmp = REAL_CONST(1.0) / ac.det; RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp; IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp; #endif } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; } else { #ifdef FIXED_POINT tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); #else tmp = 1.0f / RE(ac.r11); RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp; IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp; #endif } if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) || (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16))) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } } #else static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) { uint8_t k; real_t tmp; acorr_coef ac; for (k = 1; k < sbr->f_master[0]; k++) { auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); if (ac.det == 0) { RE(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; } else { tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); RE(alpha_0[k]) = DIV_R(tmp, (-ac.det)); tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); RE(alpha_1[k]) = DIV_R(tmp, ac.det); } if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { RE(alpha_0[k]) = REAL_CONST(0); RE(alpha_1[k]) = REAL_CONST(0); } /* reflection coefficient */ if (RE(ac.r11) == 0) { rxx[k] = COEF_CONST(0.0); } else { rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); rxx[k] = -rxx[k]; if (rxx[k] > COEF_CONST(1.0)) rxx[k] = COEF_CONST(1.0); if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0); } } } static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) { uint8_t k; rxx[0] = COEF_CONST(0.0); deg[1] = COEF_CONST(0.0); for (k = 2; k < sbr->k0; k++) { deg[k] = 0.0; if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) { if (rxx[k-1] < 0.0) { deg[k] = COEF_CONST(1.0); if (rxx[k-2] > COEF_CONST(0.0)) { deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] > COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) { if (rxx[k-1] > COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0); if (rxx[k-2] < COEF_CONST(0.0)) { deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] < COEF_CONST(0.0)) { deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); } } } } #endif /* FIXED POINT: bwArray = COEF */ static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) { switch (invf_mode) { case 1: /* LOW */ if (invf_mode_prev == 0) /* NONE */ return COEF_CONST(0.6); else return COEF_CONST(0.75); case 2: /* MID */ return COEF_CONST(0.9); case 3: /* HIGH */ return COEF_CONST(0.98); default: /* NONE */ if (invf_mode_prev == 1) /* LOW */ return COEF_CONST(0.6); else return COEF_CONST(0.0); } } /* FIXED POINT: bwArray = COEF */ static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) { uint8_t i; for (i = 0; i < sbr->N_Q; i++) { sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); else sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) sbr->bwArray[ch][i] = COEF_CONST(0.0); if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) sbr->bwArray[ch][i] = COEF_CONST(0.99609375); sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; } } static void patch_construction(sbr_info *sbr) { uint8_t i, k; uint8_t odd, sb; uint8_t msb = sbr->k0; uint8_t usb = sbr->kx; uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 }; /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */ uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)]; sbr->noPatches = 0; if (goalSb < (sbr->kx + sbr->M)) { for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) k = i+1; } else { k = sbr->N_master; } if (sbr->N_master == 0) { sbr->noPatches = 0; sbr->patchNoSubbands[0] = 0; sbr->patchStartSubband[0] = 0; return; } do { uint8_t j = k + 1; do { j--; sb = sbr->f_master[j]; odd = (sb - 2 + sbr->k0) % 2; } while (sb > (sbr->k0 - 1 + msb - odd)); sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - sbr->patchNoSubbands[sbr->noPatches]; if (sbr->patchNoSubbands[sbr->noPatches] > 0) { usb = sb; msb = sb; sbr->noPatches++; } else { msb = sbr->kx; } if (sbr->f_master[k] - sb < 3) k = sbr->N_master; } while (sb != (sbr->kx + sbr->M)); if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1)) { sbr->noPatches--; } sbr->noPatches = min(sbr->noPatches, 5); } #endif