ref: 9fb50f9fd80aad6057f6cfb272cbe6785e2c1ff7
dir: /libfaad/pns.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** The "appropriate copyright message" mentioned in section 2c of the GPLv2 ** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Nero AG through Mpeg4AAClicense@nero.com. ** ** $Id: pns.c,v 1.39 2010/06/04 20:47:56 menno Exp $ **/ #include "common.h" #include "structs.h" #include "pns.h" /* static function declarations */ static void gen_rand_vector(real_t *spec, int16_t scale_factor, uint16_t size, uint8_t sub, /* RNG states */ uint32_t *__r1, uint32_t *__r2); #ifdef FIXED_POINT #define DIV(A, B) (((int64_t)A << REAL_BITS)/B) #define step(shift) \ if ((0x40000000l >> shift) + root <= value) \ { \ value -= (0x40000000l >> shift) + root; \ root = (root >> 1) | (0x40000000l >> shift); \ } else { \ root = root >> 1; \ } /* fixed point square root approximation */ /* !!!! ONLY WORKS FOR EVEN %REAL_BITS% !!!! */ real_t fp_sqrt(real_t value) { real_t root = 0; step( 0); step( 2); step( 4); step( 6); step( 8); step(10); step(12); step(14); step(16); step(18); step(20); step(22); step(24); step(26); step(28); step(30); if (root < value) ++root; root <<= (REAL_BITS/2); return root; } static real_t const pow2_table[] = { COEF_CONST(1.0), COEF_CONST(1.18920711500272), COEF_CONST(1.41421356237310), COEF_CONST(1.68179283050743) }; #endif /* The function gen_rand_vector(addr, size) generates a vector of length <size> with signed random values of average energy MEAN_NRG per random value. A suitable random number generator can be realized using one multiplication/accumulation per random value. */ static INLINE void gen_rand_vector(real_t *spec, int16_t scale_factor, uint16_t size, uint8_t sub, /* RNG states */ uint32_t *__r1, uint32_t *__r2) { #ifndef FIXED_POINT uint16_t i; real_t energy = 0.0; real_t scale = (real_t)1.0/(real_t)size; for (i = 0; i < size; i++) { real_t tmp = scale*(real_t)(int32_t)ne_rng(__r1, __r2); spec[i] = tmp; energy += tmp*tmp; } scale = (real_t)1.0/(real_t)sqrt(energy); scale *= (real_t)pow(2.0, 0.25 * scale_factor); for (i = 0; i < size; i++) { spec[i] *= scale; } #else uint16_t i; real_t energy = 0, scale; int32_t exp, frac; for (i = 0; i < size; i++) { /* this can be replaced by a 16 bit random generator!!!! */ real_t tmp = (int32_t)ne_rng(__r1, __r2); if (tmp < 0) tmp = -(tmp & ((1<<(REAL_BITS-1))-1)); else tmp = (tmp & ((1<<(REAL_BITS-1))-1)); energy += MUL_R(tmp,tmp); spec[i] = tmp; } energy = fp_sqrt(energy); if (energy > 0) { scale = DIV(REAL_CONST(1),energy); exp = scale_factor >> 2; frac = scale_factor & 3; /* IMDCT pre-scaling */ exp -= sub; if (exp < 0) scale >>= -exp; else scale <<= exp; if (frac) scale = MUL_C(scale, pow2_table[frac]); for (i = 0; i < size; i++) { spec[i] = MUL_R(spec[i], scale); } } #endif } void pns_decode(ic_stream *ics_left, ic_stream *ics_right, real_t *spec_left, real_t *spec_right, uint16_t frame_len, uint8_t channel_pair, uint8_t object_type, /* RNG states */ uint32_t *__r1, uint32_t *__r2) { uint8_t g, sfb, b; uint16_t size, offs; uint8_t group = 0; uint16_t nshort = frame_len >> 3; uint8_t sub = 0; #ifdef FIXED_POINT /* IMDCT scaling */ if (object_type == LD) { sub = 9 /*9*/; } else { if (ics_left->window_sequence == EIGHT_SHORT_SEQUENCE) sub = 7 /*7*/; else sub = 10 /*10*/; } #endif for (g = 0; g < ics_left->num_window_groups; g++) { /* Do perceptual noise substitution decoding */ for (b = 0; b < ics_left->window_group_length[g]; b++) { for (sfb = 0; sfb < ics_left->max_sfb; sfb++) { uint32_t r1_dep = 0, r2_dep = 0; if (is_noise(ics_left, g, sfb)) { #ifdef LTP_DEC /* Simultaneous use of LTP and PNS is not prevented in the syntax. If both LTP, and PNS are enabled on the same scalefactor band, PNS takes precedence, and no prediction is applied to this band. */ ics_left->ltp.long_used[sfb] = 0; ics_left->ltp2.long_used[sfb] = 0; #endif #ifdef MAIN_DEC /* For scalefactor bands coded using PNS the corresponding predictors are switched to "off". */ ics_left->pred.prediction_used[sfb] = 0; #endif offs = ics_left->swb_offset[sfb]; size = min(ics_left->swb_offset[sfb+1], ics_left->swb_offset_max) - offs; r1_dep = *__r1; r2_dep = *__r2; /* Generate random vector */ gen_rand_vector(&spec_left[(group*nshort)+offs], ics_left->scale_factors[g][sfb], size, sub, __r1, __r2); } /* From the spec: If the same scalefactor band and group is coded by perceptual noise substitution in both channels of a channel pair, the correlation of the noise signal can be controlled by means of the ms_used field: While the default noise generation process works independently for each channel (separate generation of random vectors), the same random vector is used for both channels if ms_used[] is set for a particular scalefactor band and group. In this case, no M/S stereo coding is carried out (because M/S stereo coding and noise substitution coding are mutually exclusive). If the same scalefactor band and group is coded by perceptual noise substitution in only one channel of a channel pair the setting of ms_used[] is not evaluated. */ if ((ics_right != NULL) && is_noise(ics_right, g, sfb)) { if (channel_pair && (((ics_left->ms_mask_present == 1) && (ics_left->ms_used[g][sfb])) || (ics_left->ms_mask_present == 2))) { uint16_t c; offs = ics_right->swb_offset[sfb]; size = min(ics_right->swb_offset[sfb+1], ics_right->swb_offset_max) - offs; /* Generate random vector dependent on left channel*/ gen_rand_vector(&spec_right[(group*nshort)+offs], ics_right->scale_factors[g][sfb], size, sub, &r1_dep, &r2_dep); } else /*if (ics_left->ms_mask_present == 0)*/ { #ifdef LTP_DEC ics_right->ltp.long_used[sfb] = 0; ics_right->ltp2.long_used[sfb] = 0; #endif #ifdef MAIN_DEC ics_right->pred.prediction_used[sfb] = 0; #endif offs = ics_right->swb_offset[sfb]; size = min(ics_right->swb_offset[sfb+1], ics_right->swb_offset_max) - offs; /* Generate random vector */ gen_rand_vector(&spec_right[(group*nshort)+offs], ics_right->scale_factors[g][sfb], size, sub, __r1, __r2); } } } /* sfb */ group++; } /* b */ } /* g */ }