ref: 6e3669e675bb60b79471a087ce6c35f1800b17a1
dir: /libfaac/quantize.c/
/****************************************************************************
Quantizer core functions
quality setting, error distribution, etc.
Copyright (C) 2017 Krzysztof Nikiel
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include <immintrin.h>
#include <math.h>
#include <stdio.h>
#include "quantize.h"
#include "huff2.h"
#ifdef __SSE2__
# ifdef __GNUC__
# include <cpuid.h>
# endif
#endif
#ifdef _MSC_VER
# include <intrin.h>
# define __SSE2__
# define bit_SSE2 (1 << 26)
#endif
#define MAGIC_NUMBER 0.4054
// band sound masking
static void bmask(CoderInfo *coderInfo, double *xr0, double *bandqual,
int gnum, double quality)
{
int sfb, start, end, cnt;
int *cb_offset = coderInfo->sfb_offset;
int last;
double avgenrg;
double powm = 0.4;
double totenrg = 0.0;
int gsize = coderInfo->groups.len[gnum];
double *xr;
int win;
for (sfb = 0; sfb < coderInfo->sfbn; sfb++)
{
start = coderInfo->sfb_offset[sfb];
end = coderInfo->sfb_offset[sfb + 1];
xr = xr0;
for (win = 0; win < gsize; win++)
{
for (cnt = start; cnt < end; cnt++)
totenrg += xr[cnt] * xr[cnt];
xr += BLOCK_LEN_SHORT;
}
}
for (sfb = 0; sfb < coderInfo->sfbn; sfb++)
{
double avge, maxe;
double target;
start = cb_offset[sfb];
end = cb_offset[sfb + 1];
avge = 0.0;
maxe = 0.0;
xr = xr0;
for (win = 0; win < gsize; win++)
{
for (cnt = start; cnt < end; cnt++)
{
double e = xr[cnt]*xr[cnt];
avge += e;
if (maxe < e)
maxe = e;
}
xr += BLOCK_LEN_SHORT;
}
maxe *= gsize;
#define NOISETONE 0.2
if (coderInfo->block_type == ONLY_SHORT_WINDOW)
{
last = BLOCK_LEN_SHORT;
avgenrg = totenrg / last;
avgenrg *= end - start;
target = NOISETONE * pow(avge/avgenrg, powm);
target += (1.0 - NOISETONE) * 0.45 * pow(maxe/avgenrg, powm);
target *= 1.5;
}
else
{
last = BLOCK_LEN_LONG;
avgenrg = totenrg / last;
avgenrg *= end - start;
target = NOISETONE * pow(avge/avgenrg, powm);
target += (1.0 - NOISETONE) * 0.45 * pow(maxe/avgenrg, powm);
}
target *= 10.0 / (1.0 + ((double)(start+end)/last));
bandqual[sfb] = target * quality;
}
}
enum {MAXSHORTBAND = 36};
// use band quality levels to quantize a group of windows
static void qlevel(CoderInfo *coderInfo,
const double *xr0,
const double *bandqual,
int gnum
)
{
int sb, cnt;
// 1.5dB step
static const double sfstep = 20.0 / 1.5 / M_LN10;
#ifdef __SSE2__
int cpuid[4];
int sse2 = 0;
int gsize = coderInfo->groups.len[gnum];
cpuid[3] = 0;
# ifdef __GNUC__
__cpuid(1, cpuid[0], cpuid[1], cpuid[2], cpuid[3]);
# endif
# ifdef _MSC_VER
__cpuid(cpuid, 1);
# endif
if (cpuid[3] & bit_SSE2)
sse2 = 1;
#endif
for (sb = 0; sb < coderInfo->sfbn; sb++)
{
double sfacfix;
int sfac;
double maxx;
double rmsx;
int xitab[8 * MAXSHORTBAND];
int *xi;
int start, end;
const double *xr;
int win;
start = coderInfo->sfb_offset[sb];
end = coderInfo->sfb_offset[sb+1];
maxx = 0.0;
rmsx = 0.0;
xr = xr0;
for (win = 0; win < gsize; win++)
{
for (cnt = start; cnt < end; cnt++)
{
double e = xr[cnt] * xr[cnt];
if (maxx < e)
maxx = e;
rmsx += e;
}
xr += BLOCK_LEN_SHORT;
}
rmsx /= ((end - start) * gsize);
rmsx = sqrt(rmsx);
maxx = sqrt(maxx);
if (maxx < 10.0)
{
coderInfo->book[coderInfo->bandcnt] = ZERO_HCB;
coderInfo->sf[coderInfo->bandcnt++] = 0;
continue;
}
//printf("qual:%f/%f\n", bandqual[sb], bandqual[sb]/rmsx);
sfac = lrint(log(bandqual[sb] / rmsx) * sfstep);
sfacfix = exp(sfac / sfstep);
xr = xr0 + start;
end -= start;
xi = xitab;
for (win = 0; win < gsize; win++)
{
#ifdef __SSE2__
if (sse2)
{
for (cnt = 0; cnt < end; cnt += 4)
{
__m128 x = {xr[cnt], xr[cnt + 1], xr[cnt + 2], xr[cnt + 3]};
//printf("%f/%f\n", xr[cnt], xr[cnt] * sfacfix);
x = _mm_max_ps(x, -x);
x *= (__m128){sfacfix, sfacfix, sfacfix, sfacfix};
x *= _mm_sqrt_ps(x);
x = _mm_sqrt_ps(x);
x += (__m128){MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER, MAGIC_NUMBER};
*(__m128i*)(xi + cnt) = _mm_cvttps_epi32(x);
//printf("%d/%d/%d/%d\n", xi[cnt],xi[cnt+1],xi[cnt+2],xi[cnt+3]);
}
for (cnt = 0; cnt < end; cnt++)
{
if (xr[cnt] < 0)
xi[cnt] = -xi[cnt];
}
xi += cnt;
xr += BLOCK_LEN_SHORT;
continue;
}
#endif
for (cnt = 0; cnt < end; cnt++)
{
double tmp = fabs(xr[cnt]);
tmp *= sfacfix;
tmp = sqrt(tmp * sqrt(tmp));
xi[cnt] = (int)(tmp + MAGIC_NUMBER);
if (xr[cnt] < 0)
xi[cnt] = -xi[cnt];
}
xi += cnt;
xr += BLOCK_LEN_SHORT;
}
huffbook(coderInfo, xitab, gsize * end);
coderInfo->sf[coderInfo->bandcnt++] = SF_OFFSET - sfac;
}
}
int BlocQuant(CoderInfo *coder, double *xr, AACQuantCfg *aacquantCfg)
{
double bandlvl[MAX_SCFAC_BANDS];
int cnt;
int nonzero = 0;
double *gxr;
coder->global_gain = 0;
for (cnt = 0; cnt < coder->sfbn; cnt++)
coder->sf[cnt] = 0;
coder->bandcnt = 0;
coder->datacnt = 0;
for (cnt = 0; cnt < FRAME_LEN; cnt++)
nonzero += (fabs(xr[cnt]) > 1E-20);
if (nonzero)
{
int lastis;
int lastsf;
gxr = xr;
for (cnt = 0; cnt < coder->groups.n; cnt++)
{
bmask(coder, gxr, bandlvl, cnt,
(double)aacquantCfg->quality/DEFQUAL);
qlevel(coder, gxr, bandlvl, cnt);
gxr += coder->groups.len[cnt] * BLOCK_LEN_SHORT;
}
coder->global_gain = 0;
for (cnt = 0; cnt < coder->bandcnt; cnt++)
{
int book = coder->book[cnt];
if (!book)
continue;
if ((book != INTENSITY_HCB) && (book != INTENSITY_HCB2))
{
coder->global_gain = coder->sf[cnt];
break;
}
}
lastsf = coder->global_gain;
lastis = 0;
// fixme: move SF range check to quantizer
for (cnt = 0; cnt < coder->bandcnt; cnt++)
{
int book = coder->book[cnt];
if ((book == INTENSITY_HCB) || (book == INTENSITY_HCB2))
{
int diff = coder->sf[cnt] - lastis;
if (diff < -60)
diff = -60;
if (diff > 60)
diff = 60;
lastis += diff;
coder->sf[cnt] = lastis;
}
else if (book)
{
int diff = coder->sf[cnt] - lastsf;
if (diff < -60)
diff = -60;
if (diff > 60)
diff = 60;
lastsf += diff;
coder->sf[cnt] = lastsf;
}
}
return 1;
}
return 0;
}
void BandLimit(unsigned *bw, int rate, SR_INFO *sr, AACQuantCfg *aacquantCfg)
{
// find max short frame band
int max = *bw * (BLOCK_LEN_SHORT << 1) / rate;
int cnt;
int l;
l = 0;
for (cnt = 0; cnt < sr->num_cb_short; cnt++)
{
if (l >= max)
break;
l += sr->cb_width_short[cnt];
}
aacquantCfg->max_cbs = cnt;
*bw = (double)l * rate / (BLOCK_LEN_SHORT << 1);
// find max long frame band
max = *bw * (BLOCK_LEN_LONG << 1) / rate;
l = 0;
for (cnt = 0; cnt < sr->num_cb_long; cnt++)
{
if (l >= max)
break;
l += sr->cb_width_long[cnt];
}
aacquantCfg->max_cbl = cnt;
*bw = (double)l * rate / (BLOCK_LEN_LONG << 1);
}
enum {MINSFB = 2};
static void calce(double *xr, int *bands, double e[NSFB_SHORT], int maxsfb)
{
int sfb;
for (sfb = MINSFB; sfb < maxsfb; sfb++)
{
int l;
e[sfb] = 0;
for (l = bands[sfb]; l < bands[sfb + 1]; l++)
e[sfb] += xr[l] * xr[l];
}
}
static void resete(double min[NSFB_SHORT], double max[NSFB_SHORT],
double e[NSFB_SHORT], int maxsfb)
{
int sfb;
for (sfb = MINSFB; sfb < maxsfb; sfb++)
min[sfb] = max[sfb] = e[sfb];
}
#define PRINTSTAT 1
#if PRINTSTAT
static int groups = 0;
static int frames = 0;
#endif
void BlocGroup(double *xr, CoderInfo *coderInfo, int maxsfb)
{
int win, sfb;
double e[NSFB_SHORT];
double min[NSFB_SHORT];
double max[NSFB_SHORT];
const double thr = 3.0;
int win0;
int fastmin;
if (coderInfo->block_type != ONLY_SHORT_WINDOW)
{
coderInfo->groups.n = 1;
coderInfo->groups.len[0] = 1;
return;
}
fastmin = ((maxsfb - MINSFB) * 3) >> 2;
#if 0
coderInfo->groups.n = 1;
coderInfo->groups.len[0] = 8;
return;
#endif
#if PRINTSTAT
frames++;
#endif
calce(xr, coderInfo->sfb_offset, e, maxsfb);
resete(min, max, e, maxsfb);
win0 = 0;
coderInfo->groups.n = 0;
for (win = 1; win < MAX_SHORT_WINDOWS; win++)
{
int fast = 0;
calce(xr + win * BLOCK_LEN_SHORT, coderInfo->sfb_offset, e, maxsfb);
for (sfb = MINSFB; sfb < maxsfb; sfb++)
{
if (min[sfb] > e[sfb])
min[sfb] = e[sfb];
if (max[sfb] < e[sfb])
max[sfb] = e[sfb];
if (max[sfb] > thr * min[sfb])
fast++;
}
if (fast > fastmin)
{
coderInfo->groups.len[coderInfo->groups.n++] = win - win0;
win0 = win;
resete(min, max, e, maxsfb);
}
}
coderInfo->groups.len[coderInfo->groups.n++] = win - win0;
#if PRINTSTAT
groups += coderInfo->groups.n;
#endif
}
void BlocStat(void)
{
#if PRINTSTAT
printf("frames:%d; groups:%d; g/f:%f\n", frames, groups, (double)groups/frames);
#endif
}