ref: 20d8266e4b5ff10f33b90e485e1f2d0ed48b8c5a
dir: /src/pitch/pitchfcomb.c/
/*
Copyright (C) 2004, 2005 Mario Lang <mlang@delysid.org>
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>
This file is part of aubio.
aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "musicutils.h"
#include "spectral/fft.h"
#include "pitch/pitchfcomb.h"
#define MAX_PEAKS 8
typedef struct {
smpl_t bin;
smpl_t db;
} aubio_fpeak_t;
struct _aubio_pitchfcomb_t {
uint_t fftSize;
uint_t stepSize;
uint_t rate;
fvec_t * winput;
fvec_t * win;
cvec_t * fftOut;
fvec_t * fftLastPhase;
aubio_fft_t * fft;
};
aubio_pitchfcomb_t * new_aubio_pitchfcomb (uint_t bufsize, uint_t hopsize, uint_t channels)
{
aubio_pitchfcomb_t * p = AUBIO_NEW(aubio_pitchfcomb_t);
p->fftSize = bufsize;
p->stepSize = hopsize;
p->winput = new_fvec(bufsize,1);
p->fftOut = new_cvec(bufsize,1);
p->fftLastPhase = new_fvec(bufsize, channels);
p->fft = new_aubio_fft(bufsize, 1);
p->win = new_aubio_window("hanning", bufsize);
return p;
}
/* input must be stepsize long */
void aubio_pitchfcomb_do (aubio_pitchfcomb_t * p, fvec_t * input, fvec_t * output)
{
uint_t i, k, l, maxharm = 0;
smpl_t phaseDifference = TWO_PI*(smpl_t)p->stepSize/(smpl_t)p->fftSize;
aubio_fpeak_t peaks[MAX_PEAKS];
for (i = 0; i < input->channels; i++) {
for (k=0; k<MAX_PEAKS; k++) {
peaks[k].db = -200.;
peaks[k].bin = 0.;
}
for (k=0; k < input->length; k++){
p->winput->data[0][k] = p->win->data[0][k] * input->data[i][k];
}
aubio_fft_do(p->fft,p->winput,p->fftOut);
for (k=0; k<=p->fftSize/2; k++) {
smpl_t
magnitude = 20.*LOG10(2.*p->fftOut->norm[0][k]/(smpl_t)p->fftSize),
phase = p->fftOut->phas[0][k],
tmp, bin;
/* compute phase difference */
tmp = phase - p->fftLastPhase->data[i][k];
p->fftLastPhase->data[i][k] = phase;
/* subtract expected phase difference */
tmp -= (smpl_t)k*phaseDifference;
/* map delta phase into +/- Pi interval */
tmp = aubio_unwrap2pi(tmp);
/* get deviation from bin frequency from the +/- Pi interval */
tmp = p->fftSize/(smpl_t)p->stepSize*tmp/(TWO_PI);
/* compute the k-th partials' true bin */
bin = (smpl_t)k + tmp;
if (bin > 0.0 && magnitude > peaks[0].db) { // && magnitude < 0) {
memmove(peaks+1, peaks, sizeof(aubio_fpeak_t)*(MAX_PEAKS-1));
peaks[0].bin = bin;
peaks[0].db = magnitude;
}
}
k = 0;
for (l=1; l<MAX_PEAKS && peaks[l].bin > 0.0; l++) {
sint_t harmonic;
for (harmonic=5; harmonic>1; harmonic--) {
if (peaks[0].bin / peaks[l].bin < harmonic+.02 &&
peaks[0].bin / peaks[l].bin > harmonic-.02) {
if (harmonic > (sint_t)maxharm &&
peaks[0].db < peaks[l].db/2) {
maxharm = harmonic;
k = l;
}
}
}
}
output->data[i][0] = peaks[k].bin;
/* quick hack to clean output a bit */
if (peaks[k].bin > 5000.) output->data[i][0] = 0.;
}
}
void del_aubio_pitchfcomb (aubio_pitchfcomb_t * p)
{
del_cvec(p->fftOut);
del_fvec(p->fftLastPhase);
del_fvec(p->win);
del_fvec(p->winput);
del_aubio_fft(p->fft);
AUBIO_FREE(p);
}