ref: 20d8266e4b5ff10f33b90e485e1f2d0ed48b8c5a
dir: /src/pitch/pitchyinfft.c/
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>
This file is part of aubio.
aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfft.h"
/** pitch yinfft structure */
struct _aubio_pitchyinfft_t {
fvec_t * win; /**< temporal weighting window */
fvec_t * winput; /**< windowed spectrum */
cvec_t * res; /**< complex vector to compute square difference function */
fvec_t * sqrmag; /**< square difference function */
fvec_t * weight; /**< spectral weighting window (psychoacoustic model) */
cvec_t * fftout; /**< Fourier transform output */
aubio_fft_t * fft; /**< fft object to compute square difference function */
fvec_t * yinfft; /**< Yin function */
smpl_t tol; /**< Yin tolerance */
};
static const smpl_t freqs[] = {0., 20., 25., 31.5, 40., 50., 63., 80., 100.,
125., 160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250.,
1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000.,
12500., 15000., 20000., 25100};
static const smpl_t weight[] = {-75.8, -70.1, -60.8, -52.1, -44.2, -37.5,
-31.3, -25.6, -20.9, -16.5, -12.6, -9.6, -7.0, -4.7, -3.0, -1.8, -0.8,
-0.2, -0.0, 0.5, 1.6, 3.2, 5.4, 7.8, 8.1, 5.3, -2.4, -11.1, -12.8,
-12.2, -7.4, -17.8, -17.8, -17.8};
aubio_pitchyinfft_t * new_aubio_pitchyinfft (uint_t bufsize)
{
aubio_pitchyinfft_t * p = AUBIO_NEW(aubio_pitchyinfft_t);
p->winput = new_fvec(bufsize,1);
p->fft = new_aubio_fft(bufsize, 1);
p->fftout = new_cvec(bufsize,1);
p->sqrmag = new_fvec(bufsize,1);
p->res = new_cvec(bufsize,1);
p->yinfft = new_fvec(bufsize/2+1,1);
p->tol = 0.85;
p->win = new_aubio_window("hanningz", bufsize);
p->weight = new_fvec(bufsize/2+1,1);
{
uint_t i = 0, j = 1;
smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0;
for (i=0; i<p->weight->length; i++) {
freq = (smpl_t)i/(smpl_t)bufsize*(smpl_t)44100.;
while (freq > freqs[j]) {
j +=1;
}
a0 = weight[j-1];
f0 = freqs[j-1];
a1 = weight[j];
f1 = freqs[j];
if (f0 == f1) { // just in case
p->weight->data[0][i] = a0;
} else if (f0 == 0) { // y = ax+b
p->weight->data[0][i] = (a1-a0)/f1*freq + a0;
} else {
p->weight->data[0][i] = (a1-a0)/(f1-f0)*freq +
(a0 - (a1 - a0)/(f1/f0 - 1.));
}
while (freq > freqs[j]) {
j +=1;
}
//AUBIO_DBG("%f\n",p->weight->data[0][i]);
p->weight->data[0][i] = DB2LIN(p->weight->data[0][i]);
//p->weight->data[0][i] = SQRT(DB2LIN(p->weight->data[0][i]));
}
}
return p;
}
void aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, fvec_t * input, fvec_t * output) {
uint_t i, tau, l;
uint_t halfperiod;
smpl_t tmp, sum;
cvec_t * res = (cvec_t *)p->res;
fvec_t * yin = (fvec_t *)p->yinfft;
for (i=0; i < input->channels; i++){
l = 0; tmp = 0.; sum = 0.;
for (l=0; l < input->length; l++){
p->winput->data[0][l] = p->win->data[0][l] * input->data[i][l];
}
aubio_fft_do(p->fft,p->winput,p->fftout);
for (l=0; l < p->fftout->length; l++){
p->sqrmag->data[0][l] = SQR(p->fftout->norm[0][l]);
p->sqrmag->data[0][l] *= p->weight->data[0][l];
}
for (l=1; l < p->fftout->length; l++){
p->sqrmag->data[0][(p->fftout->length-1)*2-l] =
SQR(p->fftout->norm[0][l]);
p->sqrmag->data[0][(p->fftout->length-1)*2-l] *=
p->weight->data[0][l];
}
for (l=0; l < p->sqrmag->length/2+1; l++) {
sum += p->sqrmag->data[0][l];
}
sum *= 2.;
aubio_fft_do(p->fft,p->sqrmag,res);
yin->data[0][0] = 1.;
for (tau=1; tau < yin->length; tau++) {
yin->data[0][tau] = sum -
res->norm[0][tau]*COS(res->phas[0][tau]);
tmp += yin->data[0][tau];
yin->data[0][tau] *= tau/tmp;
}
tau = fvec_min_elem(yin);
if (yin->data[0][tau] < p->tol) {
/* no interpolation */
//return tau;
/* 3 point quadratic interpolation */
//return fvec_quadint_min(yin,tau,1);
/* additional check for (unlikely) octave doubling in higher frequencies */
if (tau>35) {
output->data[i][0] = fvec_quadint(yin,tau,i);
} else {
/* should compare the minimum value of each interpolated peaks */
halfperiod = FLOOR(tau/2+.5);
if (yin->data[0][halfperiod] < p->tol)
output->data[i][0] = fvec_quadint(yin,halfperiod,i);
else
output->data[i][0] = fvec_quadint(yin,tau,i);
}
} else {
output->data[i][0] = 0.;
}
}
}
void del_aubio_pitchyinfft(aubio_pitchyinfft_t *p){
del_fvec(p->win);
del_aubio_fft(p->fft);
del_fvec(p->yinfft);
del_fvec(p->sqrmag);
del_cvec(p->res);
del_cvec(p->fftout);
del_fvec(p->winput);
del_fvec(p->weight);
AUBIO_FREE(p);
}
uint_t aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol) {
p->tol = tol;
return 0;
}
smpl_t aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p) {
return p->tol;
}