ref: 283a619ac024af5cc6f0ab6f75807adc6434d5b0
dir: /src/spectral/fft.c/
/* Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org> This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see <http://www.gnu.org/licenses/>. */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "mathutils.h" #include "spectral/fft.h" #ifdef HAVE_FFTW3 // using FFTW3 /* note that <complex.h> is not included here but only in aubio_priv.h, so that * c++ projects can still use their own complex definition. */ #include <fftw3.h> #include <pthread.h> #ifdef HAVE_COMPLEX_H #ifdef HAVE_FFTW3F /** fft data type with complex.h and fftw3f */ #define FFTW_TYPE fftwf_complex #else /** fft data type with complex.h and fftw3 */ #define FFTW_TYPE fftw_complex #endif #else #ifdef HAVE_FFTW3F /** fft data type without complex.h and with fftw3f */ #define FFTW_TYPE float #else /** fft data type without complex.h and with fftw */ #define FFTW_TYPE double #endif #endif /** fft data type */ typedef FFTW_TYPE fft_data_t; #ifdef HAVE_FFTW3F #define fftw_malloc fftwf_malloc #define fftw_free fftwf_free #define fftw_execute fftwf_execute #define fftw_plan_dft_r2c_1d fftwf_plan_dft_r2c_1d #define fftw_plan_dft_c2r_1d fftwf_plan_dft_c2r_1d #define fftw_plan_r2r_1d fftwf_plan_r2r_1d #define fftw_plan fftwf_plan #define fftw_destroy_plan fftwf_destroy_plan #endif #ifdef HAVE_FFTW3F #if HAVE_AUBIO_DOUBLE #error "Using aubio in double precision with fftw3 in single precision" #endif /* HAVE_AUBIO_DOUBLE */ #define real_t float #elif defined (HAVE_FFTW3) /* HAVE_FFTW3F */ #if !HAVE_AUBIO_DOUBLE #error "Using aubio in single precision with fftw3 in double precision" #endif /* HAVE_AUBIO_DOUBLE */ #define real_t double #endif /* HAVE_FFTW3F */ // a global mutex for FFTW thread safety pthread_mutex_t aubio_fftw_mutex = PTHREAD_MUTEX_INITIALIZER; #elif defined HAVE_ACCELERATE // using ACCELERATE // https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/vDSPRef/Reference/reference.html #include <Accelerate/Accelerate.h> #if !HAVE_AUBIO_DOUBLE #define aubio_vDSP_ctoz vDSP_ctoz #define aubio_vDSP_fft_zrip vDSP_fft_zrip #define aubio_vDSP_ztoc vDSP_ztoc #define aubio_vDSP_zvmags vDSP_zvmags #define aubio_vDSP_zvphas vDSP_zvphas #define aubio_vDSP_vsadd vDSP_vsadd #define aubio_vDSP_vsmul vDSP_vsmul #define aubio_DSPComplex DSPComplex #define aubio_DSPSplitComplex DSPSplitComplex #define aubio_vDSP_DFT_Setup vDSP_DFT_Setup #define aubio_vDSP_DFT_zrop_CreateSetup vDSP_DFT_zrop_CreateSetup #define aubio_vDSP_DFT_Execute vDSP_DFT_Execute #define aubio_vDSP_DFT_DestroySetup vDSP_DFT_DestroySetup #define aubio_vvsqrt vvsqrtf #else #define aubio_vDSP_ctoz vDSP_ctozD #define aubio_vDSP_fft_zrip vDSP_fft_zripD #define aubio_vDSP_ztoc vDSP_ztocD #define aubio_vDSP_zvmags vDSP_zvmagsD #define aubio_vDSP_zvphas vDSP_zvphasD #define aubio_vDSP_vsadd vDSP_vsaddD #define aubio_vDSP_vsmul vDSP_vsmulD #define aubio_DSPComplex DSPDoubleComplex #define aubio_DSPSplitComplex DSPDoubleSplitComplex #define aubio_vDSP_DFT_Setup vDSP_DFT_SetupD #define aubio_vDSP_DFT_zrop_CreateSetup vDSP_DFT_zrop_CreateSetupD #define aubio_vDSP_DFT_Execute vDSP_DFT_ExecuteD #define aubio_vDSP_DFT_DestroySetup vDSP_DFT_DestroySetupD #define aubio_vvsqrt vvsqrt #endif /* HAVE_AUBIO_DOUBLE */ #elif defined HAVE_INTEL_IPP // using INTEL IPP #if !HAVE_AUBIO_DOUBLE #define aubio_IppFloat Ipp32f #define aubio_IppComplex Ipp32fc #define aubio_FFTSpec FFTSpec_R_32f #define aubio_ippsMalloc_complex ippsMalloc_32fc #define aubio_ippsFFTInit_R ippsFFTInit_R_32f #define aubio_ippsFFTGetSize_R ippsFFTGetSize_R_32f #define aubio_ippsFFTInv_CCSToR ippsFFTInv_CCSToR_32f #define aubio_ippsFFTFwd_RToCCS ippsFFTFwd_RToCCS_32f #define aubio_ippsAtan2 ippsAtan2_32f_A21 #else /* HAVE_AUBIO_DOUBLE */ #define aubio_IppFloat Ipp64f #define aubio_IppComplex Ipp64fc #define aubio_FFTSpec FFTSpec_R_64f #define aubio_ippsMalloc_complex ippsMalloc_64fc #define aubio_ippsFFTInit_R ippsFFTInit_R_64f #define aubio_ippsFFTGetSize_R ippsFFTGetSize_R_64f #define aubio_ippsFFTInv_CCSToR ippsFFTInv_CCSToR_64f #define aubio_ippsFFTFwd_RToCCS ippsFFTFwd_RToCCS_64f #define aubio_ippsAtan2 ippsAtan2_64f_A50 #endif #else // using OOURA // let's use ooura instead extern void aubio_ooura_rdft(int, int, smpl_t *, int *, smpl_t *); #endif struct _aubio_fft_t { uint_t winsize; uint_t fft_size; #ifdef HAVE_FFTW3 // using FFTW3 real_t *in, *out; fftw_plan pfw, pbw; fft_data_t * specdata; /* complex spectral data */ #elif defined HAVE_ACCELERATE // using ACCELERATE aubio_vDSP_DFT_Setup fftSetupFwd; aubio_vDSP_DFT_Setup fftSetupBwd; aubio_DSPSplitComplex spec; smpl_t *in, *out; #elif defined HAVE_INTEL_IPP // using Intel IPP smpl_t *in, *out; Ipp8u* memSpec; Ipp8u* memInit; Ipp8u* memBuffer; struct aubio_FFTSpec* fftSpec; aubio_IppComplex* complexOut; #else // using OOURA smpl_t *in, *out; smpl_t *w; int *ip; #endif /* using OOURA */ fvec_t * compspec; }; aubio_fft_t * new_aubio_fft (uint_t winsize) { aubio_fft_t * s = AUBIO_NEW(aubio_fft_t); if ((sint_t)winsize < 2) { AUBIO_ERR("fft: got winsize %d, but can not be < 2\n", winsize); goto beach; } #ifdef HAVE_FFTW3 uint_t i; s->winsize = winsize; /* allocate memory */ s->in = AUBIO_ARRAY(real_t,winsize); s->out = AUBIO_ARRAY(real_t,winsize); s->compspec = new_fvec(winsize); /* create plans */ pthread_mutex_lock(&aubio_fftw_mutex); #ifdef HAVE_COMPLEX_H s->fft_size = winsize/2 + 1; s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size); s->pfw = fftw_plan_dft_r2c_1d(winsize, s->in, s->specdata, FFTW_ESTIMATE); s->pbw = fftw_plan_dft_c2r_1d(winsize, s->specdata, s->out, FFTW_ESTIMATE); #else s->fft_size = winsize; s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size); s->pfw = fftw_plan_r2r_1d(winsize, s->in, s->specdata, FFTW_R2HC, FFTW_ESTIMATE); s->pbw = fftw_plan_r2r_1d(winsize, s->specdata, s->out, FFTW_HC2R, FFTW_ESTIMATE); #endif pthread_mutex_unlock(&aubio_fftw_mutex); for (i = 0; i < s->winsize; i++) { s->in[i] = 0.; s->out[i] = 0.; } for (i = 0; i < s->fft_size; i++) { s->specdata[i] = 0.; } #elif defined HAVE_ACCELERATE // using ACCELERATE { uint_t radix = winsize; uint_t order = 0; while ((radix / 2) * 2 == radix) { radix /= 2; order++; } if (order < 4 || (radix != 1 && radix != 3 && radix != 5 && radix != 15)) { AUBIO_ERR("fft: vDSP/Accelerate supports FFT with sizes = " "f * 2 ** n, where n > 4 and f in [1, 3, 5, 15], but requested %d. " "Use the closest power of two, or try recompiling aubio with " "--enable-fftw3.\n", winsize); goto beach; } } s->winsize = winsize; s->fft_size = winsize; s->compspec = new_fvec(winsize); s->in = AUBIO_ARRAY(smpl_t, s->fft_size); s->out = AUBIO_ARRAY(smpl_t, s->fft_size); s->spec.realp = AUBIO_ARRAY(smpl_t, s->fft_size/2); s->spec.imagp = AUBIO_ARRAY(smpl_t, s->fft_size/2); s->fftSetupFwd = aubio_vDSP_DFT_zrop_CreateSetup(NULL, s->fft_size, vDSP_DFT_FORWARD); s->fftSetupBwd = aubio_vDSP_DFT_zrop_CreateSetup(s->fftSetupFwd, s->fft_size, vDSP_DFT_INVERSE); #elif defined HAVE_INTEL_IPP // using Intel IPP const IppHintAlgorithm qualityHint = ippAlgHintAccurate; // OR ippAlgHintFast; const int flags = IPP_FFT_NODIV_BY_ANY; // we're scaling manually afterwards int order = aubio_power_of_two_order(winsize); int sizeSpec, sizeInit, sizeBuffer; IppStatus status; if (winsize <= 4 || aubio_is_power_of_two(winsize) != 1) { AUBIO_ERR("intel IPP fft: can only create with sizes > 4 and power of two, requested %d," " try recompiling aubio with --enable-fftw3\n", winsize); goto beach; } status = aubio_ippsFFTGetSize_R(order, flags, qualityHint, &sizeSpec, &sizeInit, &sizeBuffer); if (status != ippStsNoErr) { AUBIO_ERR("fft: failed to initialize fft. IPP error: %d\n", status); goto beach; } s->fft_size = s->winsize = winsize; s->compspec = new_fvec(winsize); s->in = AUBIO_ARRAY(smpl_t, s->winsize); s->out = AUBIO_ARRAY(smpl_t, s->winsize); s->memSpec = ippsMalloc_8u(sizeSpec); s->memBuffer = ippsMalloc_8u(sizeBuffer); if (sizeInit > 0 ) { s->memInit = ippsMalloc_8u(sizeInit); } s->complexOut = aubio_ippsMalloc_complex(s->fft_size / 2 + 1); status = aubio_ippsFFTInit_R( &s->fftSpec, order, flags, qualityHint, s->memSpec, s->memInit); if (status != ippStsNoErr) { AUBIO_ERR("fft: failed to initialize. IPP error: %d\n", status); goto beach; } #else // using OOURA if (aubio_is_power_of_two(winsize) != 1) { AUBIO_ERR("fft: can only create with sizes power of two, requested %d," " try recompiling aubio with --enable-fftw3\n", winsize); goto beach; } s->winsize = winsize; s->fft_size = winsize / 2 + 1; s->compspec = new_fvec(winsize); s->in = AUBIO_ARRAY(smpl_t, s->winsize); s->out = AUBIO_ARRAY(smpl_t, s->winsize); s->ip = AUBIO_ARRAY(int , s->fft_size); s->w = AUBIO_ARRAY(smpl_t, s->fft_size); s->ip[0] = 0; #endif /* using OOURA */ return s; beach: AUBIO_FREE(s); return NULL; } void del_aubio_fft(aubio_fft_t * s) { /* destroy data */ #ifdef HAVE_FFTW3 // using FFTW3 pthread_mutex_lock(&aubio_fftw_mutex); fftw_destroy_plan(s->pfw); fftw_destroy_plan(s->pbw); fftw_free(s->specdata); pthread_mutex_unlock(&aubio_fftw_mutex); #elif defined HAVE_ACCELERATE // using ACCELERATE AUBIO_FREE(s->spec.realp); AUBIO_FREE(s->spec.imagp); aubio_vDSP_DFT_DestroySetup(s->fftSetupBwd); aubio_vDSP_DFT_DestroySetup(s->fftSetupFwd); #elif defined HAVE_INTEL_IPP // using Intel IPP ippFree(s->memSpec); ippFree(s->memInit); ippFree(s->memBuffer); ippFree(s->complexOut); #else // using OOURA AUBIO_FREE(s->w); AUBIO_FREE(s->ip); #endif del_fvec(s->compspec); AUBIO_FREE(s->in); AUBIO_FREE(s->out); AUBIO_FREE(s); } void aubio_fft_do(aubio_fft_t * s, const fvec_t * input, cvec_t * spectrum) { aubio_fft_do_complex(s, input, s->compspec); aubio_fft_get_spectrum(s->compspec, spectrum); } void aubio_fft_rdo(aubio_fft_t * s, const cvec_t * spectrum, fvec_t * output) { aubio_fft_get_realimag(spectrum, s->compspec); aubio_fft_rdo_complex(s, s->compspec, output); } void aubio_fft_do_complex(aubio_fft_t * s, const fvec_t * input, fvec_t * compspec) { uint_t i; #ifndef HAVE_MEMCPY_HACKS for (i=0; i < s->winsize; i++) { s->in[i] = input->data[i]; } #else memcpy(s->in, input->data, s->winsize * sizeof(smpl_t)); #endif /* HAVE_MEMCPY_HACKS */ #ifdef HAVE_FFTW3 // using FFTW3 fftw_execute(s->pfw); #ifdef HAVE_COMPLEX_H compspec->data[0] = REAL(s->specdata[0]); for (i = 1; i < s->fft_size -1 ; i++) { compspec->data[i] = REAL(s->specdata[i]); compspec->data[compspec->length - i] = IMAG(s->specdata[i]); } compspec->data[s->fft_size-1] = REAL(s->specdata[s->fft_size-1]); #else /* HAVE_COMPLEX_H */ for (i = 0; i < s->fft_size; i++) { compspec->data[i] = s->specdata[i]; } #endif /* HAVE_COMPLEX_H */ #elif defined HAVE_ACCELERATE // using ACCELERATE // convert real data to even/odd format used in vDSP aubio_vDSP_ctoz((aubio_DSPComplex*)s->in, 2, &s->spec, 1, s->fft_size/2); // compute the FFT aubio_vDSP_DFT_Execute(s->fftSetupFwd, s->spec.realp, s->spec.imagp, s->spec.realp, s->spec.imagp); // convert from vDSP complex split to [ r0, r1, ..., rN, iN-1, .., i2, i1] compspec->data[0] = s->spec.realp[0]; compspec->data[s->fft_size / 2] = s->spec.imagp[0]; for (i = 1; i < s->fft_size / 2; i++) { compspec->data[i] = s->spec.realp[i]; compspec->data[s->fft_size - i] = s->spec.imagp[i]; } // apply scaling smpl_t scale = 1./2.; aubio_vDSP_vsmul(compspec->data, 1, &scale, compspec->data, 1, s->fft_size); #elif defined HAVE_INTEL_IPP // using Intel IPP // apply fft aubio_ippsFFTFwd_RToCCS(s->in, (aubio_IppFloat*)s->complexOut, s->fftSpec, s->memBuffer); // convert complex buffer to [ r0, r1, ..., rN, iN-1, .., i2, i1] compspec->data[0] = s->complexOut[0].re; compspec->data[s->fft_size / 2] = s->complexOut[s->fft_size / 2].re; for (i = 1; i < s->fft_size / 2; i++) { compspec->data[i] = s->complexOut[i].re; compspec->data[s->fft_size - i] = s->complexOut[i].im; } #else // using OOURA aubio_ooura_rdft(s->winsize, 1, s->in, s->ip, s->w); compspec->data[0] = s->in[0]; compspec->data[s->winsize / 2] = s->in[1]; for (i = 1; i < s->fft_size - 1; i++) { compspec->data[i] = s->in[2 * i]; compspec->data[s->winsize - i] = - s->in[2 * i + 1]; } #endif /* using OOURA */ } void aubio_fft_rdo_complex(aubio_fft_t * s, const fvec_t * compspec, fvec_t * output) { uint_t i; #ifdef HAVE_FFTW3 const smpl_t renorm = 1./(smpl_t)s->winsize; #ifdef HAVE_COMPLEX_H s->specdata[0] = compspec->data[0]; for (i=1; i < s->fft_size - 1; i++) { s->specdata[i] = compspec->data[i] + I * compspec->data[compspec->length - i]; } s->specdata[s->fft_size - 1] = compspec->data[s->fft_size - 1]; #else for (i=0; i < s->fft_size; i++) { s->specdata[i] = compspec->data[i]; } #endif fftw_execute(s->pbw); for (i = 0; i < output->length; i++) { output->data[i] = s->out[i]*renorm; } #elif defined HAVE_ACCELERATE // using ACCELERATE // convert from real imag [ r0, r1, ..., rN, iN-1, .., i2, i1] // to vDSP packed format [ r0, rN, r1, i1, ..., rN-1, iN-1 ] s->out[0] = compspec->data[0]; s->out[1] = compspec->data[s->winsize / 2]; for (i = 1; i < s->fft_size / 2; i++) { s->out[2 * i] = compspec->data[i]; s->out[2 * i + 1] = compspec->data[s->winsize - i]; } // convert to split complex format used in vDSP aubio_vDSP_ctoz((aubio_DSPComplex*)s->out, 2, &s->spec, 1, s->fft_size/2); // compute the FFT aubio_vDSP_DFT_Execute(s->fftSetupBwd, s->spec.realp, s->spec.imagp, s->spec.realp, s->spec.imagp); // convert result to real output aubio_vDSP_ztoc(&s->spec, 1, (aubio_DSPComplex*)output->data, 2, s->fft_size/2); // apply scaling smpl_t scale = 1.0 / s->winsize; aubio_vDSP_vsmul(output->data, 1, &scale, output->data, 1, s->fft_size); #elif defined HAVE_INTEL_IPP // using Intel IPP // convert from real imag [ r0, 0, ..., rN, iN-1, .., i2, i1, iN-1] to complex format s->complexOut[0].re = compspec->data[0]; s->complexOut[0].im = 0; s->complexOut[s->fft_size / 2].re = compspec->data[s->fft_size / 2]; s->complexOut[s->fft_size / 2].im = 0.0; for (i = 1; i < s->fft_size / 2; i++) { s->complexOut[i].re = compspec->data[i]; s->complexOut[i].im = compspec->data[s->fft_size - i]; } // apply fft aubio_ippsFFTInv_CCSToR((const aubio_IppFloat *)s->complexOut, output->data, s->fftSpec, s->memBuffer); // apply scaling aubio_ippsMulC(output->data, 1.0 / s->winsize, output->data, s->fft_size); #else // using OOURA smpl_t scale = 2.0 / s->winsize; s->out[0] = compspec->data[0]; s->out[1] = compspec->data[s->winsize / 2]; for (i = 1; i < s->fft_size - 1; i++) { s->out[2 * i] = compspec->data[i]; s->out[2 * i + 1] = - compspec->data[s->winsize - i]; } aubio_ooura_rdft(s->winsize, -1, s->out, s->ip, s->w); for (i=0; i < s->winsize; i++) { output->data[i] = s->out[i] * scale; } #endif } void aubio_fft_get_spectrum(const fvec_t * compspec, cvec_t * spectrum) { aubio_fft_get_phas(compspec, spectrum); aubio_fft_get_norm(compspec, spectrum); } void aubio_fft_get_realimag(const cvec_t * spectrum, fvec_t * compspec) { aubio_fft_get_imag(spectrum, compspec); aubio_fft_get_real(spectrum, compspec); } void aubio_fft_get_phas(const fvec_t * compspec, cvec_t * spectrum) { uint_t i; if (compspec->data[0] < 0) { spectrum->phas[0] = PI; } else { spectrum->phas[0] = 0.; } #if defined(HAVE_INTEL_IPP) // convert from real imag [ r0, r1, ..., rN, iN-1, ..., i2, i1, i0] // to [ r0, r1, ..., rN, i0, i1, i2, ..., iN-1] for (i = 1; i < spectrum->length / 2; i++) { ELEM_SWAP(compspec->data[compspec->length - i], compspec->data[spectrum->length + i - 1]); } aubio_ippsAtan2(compspec->data + spectrum->length, compspec->data + 1, spectrum->phas + 1, spectrum->length - 1); // revert the imaginary part back again for (i = 1; i < spectrum->length / 2; i++) { ELEM_SWAP(compspec->data[spectrum->length + i - 1], compspec->data[compspec->length - i]); } #else for (i=1; i < spectrum->length - 1; i++) { spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i], compspec->data[i]); } #endif #ifdef HAVE_FFTW3 // for even length only, make sure last element is 0 or PI if (2 * (compspec->length / 2) == compspec->length) { #endif if (compspec->data[compspec->length/2] < 0) { spectrum->phas[spectrum->length - 1] = PI; } else { spectrum->phas[spectrum->length - 1] = 0.; } #ifdef HAVE_FFTW3 } else { i = spectrum->length - 1; spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i], compspec->data[i]); } #endif } void aubio_fft_get_norm(const fvec_t * compspec, cvec_t * spectrum) { uint_t i = 0; spectrum->norm[0] = ABS(compspec->data[0]); for (i=1; i < spectrum->length - 1; i++) { spectrum->norm[i] = SQRT(SQR(compspec->data[i]) + SQR(compspec->data[compspec->length - i]) ); } #ifdef HAVE_FFTW3 // for even length, make sure last element is > 0 if (2 * (compspec->length / 2) == compspec->length) { #endif spectrum->norm[spectrum->length-1] = ABS(compspec->data[compspec->length/2]); #ifdef HAVE_FFTW3 } else { i = spectrum->length - 1; spectrum->norm[i] = SQRT(SQR(compspec->data[i]) + SQR(compspec->data[compspec->length - i]) ); } #endif } void aubio_fft_get_imag(const cvec_t * spectrum, fvec_t * compspec) { uint_t i; for (i = 1; i < ( compspec->length + 1 ) / 2 /*- 1 + 1*/; i++) { compspec->data[compspec->length - i] = spectrum->norm[i]*SIN(spectrum->phas[i]); } } void aubio_fft_get_real(const cvec_t * spectrum, fvec_t * compspec) { uint_t i; for (i = 0; i < compspec->length / 2 + 1; i++) { compspec->data[i] = spectrum->norm[i]*COS(spectrum->phas[i]); } }