ref: 3bf80b9872d63282409dfc876e3dc29140c134ef
dir: /python/tests/test_fft.py/
#! /usr/bin/env python from numpy.testing import TestCase from numpy.testing import assert_equal, assert_almost_equal from aubio import fvec, fft, cvec from math import pi class aubio_fft_test_case(TestCase): def test_members(self): """ check members are set correctly """ win_s = 2048 f = fft(win_s) assert_equal (f.win_s, win_s) def test_output_dimensions(self): """ check the dimensions of output """ win_s = 1024 timegrain = fvec(win_s) f = fft (win_s) fftgrain = f (timegrain) del f assert_equal (fftgrain.norm.shape, (win_s/2+1,)) assert_equal (fftgrain.phas.shape, (win_s/2+1,)) def test_zeros(self): """ check the transform of zeros is all zeros """ win_s = 512 timegrain = fvec(win_s) f = fft (win_s) fftgrain = f (timegrain) assert_equal ( fftgrain.norm, 0 ) assert_equal ( fftgrain.phas, 0 ) def test_impulse(self): """ check the transform of one impulse at a random place """ from random import random from math import floor win_s = 256 i = floor(random()*win_s) impulse = pi * random() f = fft(win_s) timegrain = fvec(win_s) timegrain[i] = impulse fftgrain = f ( timegrain ) #self.plot_this ( fftgrain.phas ) assert_almost_equal ( fftgrain.norm, impulse, decimal = 6 ) assert_equal ( fftgrain.phas <= pi, True) assert_equal ( fftgrain.phas >= -pi, True) def test_impulse_negative(self): """ check the transform of one impulse at a random place """ from random import random from math import floor win_s = 256 i = 0 impulse = -10. f = fft(win_s) timegrain = fvec(win_s) timegrain[i] = impulse fftgrain = f ( timegrain ) #self.plot_this ( fftgrain.phas ) assert_almost_equal ( fftgrain.norm, abs(impulse), decimal = 6 ) if impulse < 0: # phase can be pi or -pi, as it is not unwrapped assert_almost_equal ( abs(fftgrain.phas[1:-1]) , pi, decimal = 6 ) assert_almost_equal ( fftgrain.phas[0], pi, decimal = 6) assert_almost_equal ( fftgrain.phas[-1], pi, decimal = 6) else: assert_equal ( fftgrain.phas[1:-1] == 0, True) assert_equal ( fftgrain.phas[0] == 0, True) assert_equal ( fftgrain.phas[-1] == 0, True) # now check the resynthesis synthgrain = f.rdo ( fftgrain ) #self.plot_this ( fftgrain.phas.T ) assert_equal ( fftgrain.phas <= pi, True) assert_equal ( fftgrain.phas >= -pi, True) #self.plot_this ( synthgrain - timegrain ) assert_almost_equal ( synthgrain, timegrain, decimal = 6 ) def test_impulse_at_zero(self): """ check the transform of one impulse at a index 0 """ win_s = 1024 impulse = pi f = fft(win_s) timegrain = fvec(win_s) timegrain[0] = impulse fftgrain = f ( timegrain ) #self.plot_this ( fftgrain.phas ) assert_equal ( fftgrain.phas[0], 0) # could be 0 or -0 depending on fft implementation (0 for fftw3, -0 for ooura) assert_almost_equal ( fftgrain.phas[1], 0) assert_almost_equal ( fftgrain.norm[0], impulse, decimal = 6 ) def test_rdo_before_do(self): """ check running fft.rdo before fft.do works """ win_s = 1024 impulse = pi f = fft(win_s) fftgrain = cvec(win_s) t = f.rdo( fftgrain ) assert_equal ( t, 0 ) def plot_this(self, this): from pylab import plot, show plot ( this ) show () def test_local_fftgrain(self): """ check aubio.fft() result can be accessed after deletion """ def compute_grain(impulse): win_s = 1024 timegrain = fvec(win_s) timegrain[0] = impulse f = fft(win_s) fftgrain = f ( timegrain ) return fftgrain impulse = pi fftgrain = compute_grain(impulse) assert_equal ( fftgrain.phas[0], 0) assert_almost_equal ( fftgrain.phas[1], 0) assert_almost_equal ( fftgrain.norm[0], impulse, decimal = 6 ) def test_local_reconstruct(self): """ check aubio.fft.rdo() result can be accessed after deletion """ def compute_grain(impulse): win_s = 1024 timegrain = fvec(win_s) timegrain[0] = impulse f = fft(win_s) fftgrain = f ( timegrain ) r = f.rdo(fftgrain) return r impulse = pi r = compute_grain(impulse) assert_almost_equal ( r[0], impulse, decimal = 6) assert_almost_equal ( r[1:], 0) def test_large_input_timegrain(self): win_s = 1024 f = fft(win_s) t = fvec(win_s + 1) with self.assertRaises(ValueError): f(t) def test_small_input_timegrain(self): win_s = 1024 f = fft(win_s) t = fvec(1) with self.assertRaises(ValueError): f(t) def test_large_input_fftgrain(self): win_s = 1024 f = fft(win_s) s = cvec(win_s + 5) with self.assertRaises(ValueError): f.rdo(s) def test_small_input_fftgrain(self): win_s = 1024 f = fft(win_s) s = cvec(16) with self.assertRaises(ValueError): f.rdo(s) if __name__ == '__main__': from nose2 import main main()