ref: 43ce34c584f13da6583cc38e129b7f6b5d2c0b1d
dir: /python/demos/demo_reading_speed.py/
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Compare the speed of several methods for reading and loading a sound file. Optionally, this file can make use of the following packages: - audioread https://github.com/beetbox/audioread - scipy https://scipy.org - librosa https://github.com/bmcfee/librosa - pydub https://github.com/jiaaro/pydub Uncomment the function names below and send us your speed results! """ test_functions = [ "read_file_aubio", "load_file_aubio", #"load_file_scipy", #"load_file_scipy_mmap", #"read_file_audioread", #"load_file_librosa", #"read_file_pydub", #"load_file_pydub", ] import numpy as np def read_file_audioread(filename): import audioread # taken from librosa.util.utils def convert_buffer_to_float(buf, n_bytes = 2, dtype = np.float32): # Invert the scale of the data scale = 1./float(1 << ((8 * n_bytes) - 1)) # Construct the format string fmt = '<i{:d}'.format(n_bytes) # Rescale and format the data buffer out = scale * np.frombuffer(buf, fmt).astype(dtype) return out with audioread.audio_open(filename) as f: total_frames = 0 for buf in f: samples = convert_buffer_to_float(buf) samples = samples.reshape(f.channels, -1) total_frames += samples.shape[1] return total_frames, f.samplerate def load_file_librosa(filename): import librosa y, sr = librosa.load(filename, sr = None) #print y.mean(), y.shape return len(y), sr def load_file_scipy(filename): import scipy.io.wavfile sr, y = scipy.io.wavfile.read(filename) y = y.astype('float32') / 32767 #print y.mean(), y.shape return len(y), sr def load_file_scipy_mmap(filename): import scipy.io.wavfile sr, y = scipy.io.wavfile.read(filename, mmap = True) #print y.mean(), y.shape return len(y), sr def read_file_pydub(filename): from pydub import AudioSegment song = AudioSegment.from_file(filename) song.get_array_of_samples() return song.frame_count(), song.frame_rate def load_file_pydub(filename): from pydub import AudioSegment song = AudioSegment.from_file(filename) y = np.asarray(song.get_array_of_samples(), dtype = 'float32') y = y.reshape(song.channels, -1) / 32767. return song.frame_count(), song.frame_rate def read_file_aubio(filename): import aubio f = aubio.source(filename, hop_size = 1024) total_frames = 0 while True: _, read = f() total_frames += read if read < f.hop_size: break return total_frames, f.samplerate def load_file_aubio(filename): import aubio f = aubio.source(filename, hop_size = 1024) y = np.zeros(f.duration, dtype = aubio.float_type) total_frames = 0 while True: samples, read = f() y[total_frames:total_frames + read] = samples[:read] total_frames += read if read < f.hop_size: break assert len(y) == total_frames #print y.mean(), y.shape return total_frames, f.samplerate def test_speed(function, filename): times = [] for _ in range(10): start = time.time() try: total_frames, samplerate = function(filename) except ImportError as e: print ("error: failed importing {:s}".format(e)) return elapsed = time.time() - start #print ("{:5f} ".format(elapsed)), times.append(elapsed) #print times = np.array(times) duration_min = int(total_frames/float(samplerate) // 60) str_format = '{:25s} took {:5f} seconds avg (±{:5f}) to run on a ~ {:d} minutes long file' print (str_format.format(function.__name__, times.mean(), times.std(), duration_min )) if __name__ == '__main__': import sys, time if len(sys.argv) < 2: print ("not enough arguments") sys.exit(1) filename = sys.argv[1] for f in test_functions: # get actual function from globals test_function = globals()[f] test_speed(test_function, filename)