ref: 5b194f0eec9daa56377e3ff43ad4af7483f14842
dir: /python/demos/demo_yin_compare.py/
#! /usr/bin/env python # -*- coding: utf8 -*- """ Pure python implementation of the sum of squared difference sqd_yin: original sum of squared difference [0] d_t(tau) = x ⊗ kernel sqd_yinfast: sum of squared diff using complex domain [0] sqd_yinfftslow: tappered squared diff [1] sqd_yinfft: modified squared diff using complex domain [1] [0]:http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf [1]:https://aubio.org/phd/ """ import sys import numpy as np import matplotlib.pyplot as plt def sqd_yin(samples): """ compute original sum of squared difference Brute-force computation (cost o(N**2), slow).""" B = len(samples) W = B//2 yin = np.zeros(W) for j in range(W): for tau in range(1, W): yin[tau] += (samples[j] - samples[j+tau])**2 return yin def sqd_yinfast(samples): """ compute approximate sum of squared difference Using complex convolution (fast, cost o(n*log(n)) )""" # yin_t(tau) = (r_t(0) + r_(t+tau)(0)) - 2r_t(tau) B = len(samples) W = B//2 yin = np.zeros(W) sqdiff = np.zeros(W) kernel = np.zeros(B) # compute r_(t+tau)(0) squares = samples**2 for tau in range(W): sqdiff[tau] = squares[tau:tau+W].sum() # add r_t(0) sqdiff += sqdiff[0] # compute r_t(tau) using kernel convolution in complex domain samples_fft = np.fft.fft(samples) kernel[1:W+1] = samples[W-1::-1] # first half, reversed kernel_fft = np.fft.fft(kernel) r_t_tau = np.fft.ifft(samples_fft * kernel_fft).real[W:] # compute yin_t(tau) yin = sqdiff - 2 * r_t_tau return yin def sqd_yintapered(samples): """ compute tappered sum of squared difference Brute-force computation (cost o(N**2), slow).""" B = len(samples) W = B//2 yin = np.zeros(W) for tau in range(1, W): for j in range(W - tau): yin[tau] += (samples[j] - samples[j+tau])**2 return yin def sqd_yinfft(samples): """ compute yinfft modified sum of squared differences Very fast, improved performance in transients. FIXME: biased.""" B = len(samples) W = B//2 yin = np.zeros(W) def hanningz(W): return .5 * (1. - np.cos(2. * np.pi * np.arange(W) / W)) #win = np.ones(B) win = hanningz(B) sqrmag = np.zeros(B) fftout = np.fft.fft(win*samples) sqrmag[0] = fftout[0].real**2 for l in range(1, W): sqrmag[l] = fftout[l].real**2 + fftout[l].imag**2 sqrmag[B-l] = sqrmag[l] sqrmag[W] = fftout[W].real**2 fftout = np.fft.fft(sqrmag) sqrsum = 2.*sqrmag[:W + 1].sum() yin[0] = 0 yin[1:] = sqrsum - fftout.real[1:W] return yin / B def cumdiff(yin): """ compute the cumulative mean normalized difference """ W = len(yin) yin[0] = 1. cumsum = 0. for tau in range(1, W): cumsum += yin[tau] if cumsum != 0: yin[tau] *= tau/cumsum else: yin[tau] = 1 return yin def compute_all(x): import time now = time.time() yin = sqd_yin(x) t1 = time.time() print ("yin took %.2fms" % ((t1-now) * 1000.)) yinfast = sqd_yinfast(x) t2 = time.time() print ("yinfast took: %.2fms" % ((t2-t1) * 1000.)) yintapered = sqd_yintapered(x) t3 = time.time() print ("yintapered took: %.2fms" % ((t3-t2) * 1000.)) yinfft = sqd_yinfft(x) t4 = time.time() print ("yinfft took: %.2fms" % ((t4-t3) * 1000.)) return yin, yinfast, yintapered, yinfft def plot_all(yin, yinfast, yintapered, yinfft): fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey='col') axes[0, 0].plot(yin, label='yin') axes[0, 0].plot(yintapered, label='yintapered') axes[0, 0].set_ylim(bottom=0) axes[0, 0].legend() axes[1, 0].plot(yinfast, '-', label='yinfast') axes[1, 0].plot(yinfft, label='yinfft') axes[1, 0].legend() axes[0, 1].plot(cumdiff(yin), label='yin') axes[0, 1].plot(cumdiff(yintapered), label='yin tapered') axes[0, 1].set_ylim(bottom=0) axes[0, 1].legend() axes[1, 1].plot(cumdiff(yinfast), '-', label='yinfast') axes[1, 1].plot(cumdiff(yinfft), label='yinfft') axes[1, 1].legend() fig.tight_layout() testfreqs = [441., 800., 10000., 40.] if len(sys.argv) > 1: testfreqs = map(float,sys.argv[1:]) for f in testfreqs: print ("Comparing yin implementations for sine wave at %.fHz" % f) samplerate = 44100. win_s = 4096 x = np.cos(2.*np.pi * np.arange(win_s) * f / samplerate) n_times = 1#00 for n in range(n_times): yin, yinfast, yinfftslow, yinfft = compute_all(x) if 0: # plot difference plt.plot(yin-yinfast) plt.tight_layout() plt.show() if 1: plt.plot(yinfftslow-yinfft) plt.tight_layout() plt.show() plot_all(yin, yinfast, yinfftslow, yinfft) plt.show()