ref: 5f4fd2fc728368192069e4e84d2bb8c80ff4cc0e
dir: /src/pitch/pitchyinfft.c/
/* Copyright (C) 2003 Paul Brossier This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "mathutils.h" #include "spectral/fft.h" #include "pitch/pitchyinfft.h" /** pitch yinfft structure */ struct _aubio_pitchyinfft_t { fvec_t * win; /**< temporal weighting window */ fvec_t * winput; /**< windowed spectrum */ cvec_t * res; /**< complex vector to compute square difference function */ fvec_t * sqrmag; /**< square difference function */ fvec_t * weight; /**< spectral weighting window (psychoacoustic model) */ cvec_t * fftout; /**< Fourier transform output */ aubio_fft_t * fft; /**< fft object to compute square difference function */ fvec_t * yinfft; /**< Yin function */ smpl_t tol; /**< Yin tolerance */ }; static const smpl_t freqs[] = {0., 20., 25., 31.5, 40., 50., 63., 80., 100., 125., 160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250., 1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000., 12500., 15000., 20000., 25100}; static const smpl_t weight[] = {-75.8, -70.1, -60.8, -52.1, -44.2, -37.5, -31.3, -25.6, -20.9, -16.5, -12.6, -9.6, -7.0, -4.7, -3.0, -1.8, -0.8, -0.2, -0.0, 0.5, 1.6, 3.2, 5.4, 7.8, 8.1, 5.3, -2.4, -11.1, -12.8, -12.2, -7.4, -17.8, -17.8, -17.8}; aubio_pitchyinfft_t * new_aubio_pitchyinfft (uint_t bufsize) { aubio_pitchyinfft_t * p = AUBIO_NEW(aubio_pitchyinfft_t); p->winput = new_fvec(bufsize,1); p->fft = new_aubio_fft(bufsize, 1); p->fftout = new_cvec(bufsize,1); p->sqrmag = new_fvec(bufsize,1); p->res = new_cvec(bufsize,1); p->yinfft = new_fvec(bufsize/2+1,1); p->tol = 0.85; p->win = new_aubio_window(bufsize, aubio_win_hanningz); p->weight = new_fvec(bufsize/2+1,1); { uint_t i = 0, j = 1; smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0; for (i=0; i<p->weight->length; i++) { freq = (smpl_t)i/(smpl_t)bufsize*(smpl_t)44100.; while (freq > freqs[j]) { j +=1; } a0 = weight[j-1]; f0 = freqs[j-1]; a1 = weight[j]; f1 = freqs[j]; if (f0 == f1) { // just in case p->weight->data[0][i] = a0; } else if (f0 == 0) { // y = ax+b p->weight->data[0][i] = (a1-a0)/f1*freq + a0; } else { p->weight->data[0][i] = (a1-a0)/(f1-f0)*freq + (a0 - (a1 - a0)/(f1/f0 - 1.)); } while (freq > freqs[j]) { j +=1; } //AUBIO_DBG("%f\n",p->weight->data[0][i]); p->weight->data[0][i] = DB2LIN(p->weight->data[0][i]); //p->weight->data[0][i] = SQRT(DB2LIN(p->weight->data[0][i])); } } return p; } void aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, fvec_t * input, fvec_t * output) { uint_t i, tau, l; uint_t halfperiod; smpl_t tmp, sum; cvec_t * res = (cvec_t *)p->res; fvec_t * yin = (fvec_t *)p->yinfft; for (i=0; i < input->channels; i++){ l = 0; tmp = 0.; sum = 0.; for (l=0; l < input->length; l++){ p->winput->data[0][l] = p->win->data[0][l] * input->data[i][l]; } aubio_fft_do(p->fft,p->winput,p->fftout); for (l=0; l < p->fftout->length; l++){ p->sqrmag->data[0][l] = SQR(p->fftout->norm[0][l]); p->sqrmag->data[0][l] *= p->weight->data[0][l]; } for (l=1; l < p->fftout->length; l++){ p->sqrmag->data[0][(p->fftout->length-1)*2-l] = SQR(p->fftout->norm[0][l]); p->sqrmag->data[0][(p->fftout->length-1)*2-l] *= p->weight->data[0][l]; } for (l=0; l < p->sqrmag->length/2+1; l++) { sum += p->sqrmag->data[0][l]; } sum *= 2.; aubio_fft_do(p->fft,p->sqrmag,res); yin->data[0][0] = 1.; for (tau=1; tau < yin->length; tau++) { yin->data[0][tau] = sum - res->norm[0][tau]*COS(res->phas[0][tau]); tmp += yin->data[0][tau]; yin->data[0][tau] *= tau/tmp; } tau = fvec_min_elem(yin); if (yin->data[0][tau] < p->tol) { /* no interpolation */ //return tau; /* 3 point quadratic interpolation */ //return fvec_quadint_min(yin,tau,1); /* additional check for (unlikely) octave doubling in higher frequencies */ if (tau>35) { output->data[i][0] = fvec_quadint(yin,tau,1); } else { /* should compare the minimum value of each interpolated peaks */ halfperiod = FLOOR(tau/2+.5); if (yin->data[0][halfperiod] < p->tol) output->data[i][0] = fvec_quadint(yin,halfperiod,1); else output->data[i][0] = fvec_quadint(yin,tau,1); } } else { output->data[i][0] = 0.; } } } void del_aubio_pitchyinfft(aubio_pitchyinfft_t *p){ del_fvec(p->win); del_aubio_fft(p->fft); del_fvec(p->yinfft); del_fvec(p->sqrmag); del_cvec(p->res); del_cvec(p->fftout); del_fvec(p->winput); del_fvec(p->weight); AUBIO_FREE(p); } uint_t aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol) { p->tol = tol; return 0; } smpl_t aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p) { return p->tol; }