ref: 75139a99ef6ddaba3713d9a1181659c8026d02a3
dir: /python/bench-onset/
#! /usr/bin/python from aubio.bench.config import * from aubio.bench.node import * class onset_parameters: def __init__(self): """ set default parameters """ self.silence = -70 self.derivate = False self.localmin = False self.bufsize = 512 self.hopsize = 256 self.samplerate = 44100 self.tol = 0.05 self.step = float(self.hopsize)/float(self.samplerate) self.threshold = 0.1 self.mode = 'dual' class taskonset(task): def pretty_print(self,values): for i in range(len(values)): print self.formats[i] % values[i], print def compute_results(self): self.P = 100*float(self.expc-self.missed-self.merged)/(self.expc-self.missed-self.merged + self.bad+self.doubled) self.R = 100*float(self.expc-self.missed-self.merged)/(self.expc-self.missed-self.merged + self.missed+self.merged) if self.R < 0: self.R = 0 self.F = 2* self.P*self.R / (self.P+self.R) self.values = [self.params.mode, "%2.3f" % self.params.threshold, self.orig, self.expc, self.missed, self.merged, self.bad, self.doubled, (self.orig-self.missed-self.merged), "%2.3f" % (100*float(self.orig-self.missed-self.merged)/(self.orig)), "%2.3f" % (100*float(self.bad+self.doubled)/(self.orig)), "%2.3f" % (100*float(self.orig-self.missed)/(self.orig)), "%2.3f" % (100*float(self.bad)/(self.orig)), "%2.3f" % self.P, "%2.3f" % self.R, "%2.3f" % self.F ] def compute_onset(self,input,output): from aubio.tasks import getonsets, get_onset_mode from aubio.onsetcompare import onset_roc, onset_diffs from aubio.txtfile import read_datafile amode = 'roc' vmode = 'verbose' vmode = '' lres, ofunc = getonsets(input, self.params.threshold, self.params.silence, mode=get_onset_mode(self.params.mode), localmin=self.params.localmin, derivate=self.params.derivate, bufsize=self.params.bufsize, hopsize=self.params.hopsize, storefunc=False) for i in range(len(lres)): lres[i] = lres[i]*self.params.step ltru = read_datafile(input.replace('.wav','.txt'),depth=0) if vmode=='verbose': print "Running with mode %s" % self.params.mode, print " and threshold %f" % self.params.threshold, print " on file", input #print ltru; print lres if amode == 'localisation': l = onset_diffs(ltru,lres,self.params.tol) mean = 0 for i in l: mean += i if len(l): print "%.3f" % (mean/len(l)) else: print "?0" elif amode == 'roc': orig, missed, merged, expc, bad, doubled = onset_roc(ltru,lres,self.params.tol) self.orig += orig self.missed += missed self.merged += merged self.expc += expc self.bad += bad self.doubled += doubled self.compute_results() def compute_data(self): self.orig, self.missed, self.merged, self.expc, \ self.bad, self.doubled = 0, 0, 0, 0, 0, 0 act_on_data(self.compute_onset,self.datadir,self.resdir, \ suffix='',filter='f -name \'*.wav\'') def run_bench(self,modes=['dual'],thresholds=[0.5]): self.modes = modes self.thresholds = thresholds self.pretty_print(self.titles) for mode in self.modes: self.params.mode = mode for threshold in self.thresholds: self.params.threshold = threshold self.compute_data() self.compute_results() self.pretty_print(self.values) def auto_learn(self,modes=['dual'],thresholds=[0.1,1.5]): """ simple dichotomia like algorithm to optimise threshold """ self.modes = modes self.pretty_print(self.titles) for mode in self.modes: steps = 10 lesst = thresholds[0] topt = thresholds[1] self.params.mode = mode self.params.threshold = topt self.compute_data() self.pretty_print(self.values) topF = self.F self.params.threshold = lesst self.compute_data() self.pretty_print(self.values) lessF = self.F for i in range(steps): self.params.threshold = ( lesst + topt ) * .5 self.compute_data() self.pretty_print(self.values) if self.F == 100.0 or self.F == topF: print "assuming we converged, stopping" break #elif abs(self.F - topF) < 0.01 : # print "done converging" # break if topF < self.F: #lessF = topF #lesst = topt topF = self.F topt = self.params.threshold elif lessF < self.F: lessF = self.F lesst = self.params.threshold if topt == lesst: lesst /= 2. #modes = [ 'complex' ] modes = ['complex', 'energy', 'phase', 'specdiff', 'kl', 'mkl', 'dual'] #thresholds = [1.5] thresholds = [ 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5] #datapath = "%s%s" % (DATADIR,'/onset/DB/*/') datapath = "%s%s" % (DATADIR,'/onset/DB/PercussivePhrases/RobertRich') respath = '/var/tmp/DB-testings' taskonset = taskonset(datapath,respath) taskonset.params = onset_parameters() taskonset.titles = [ 'mode', 'thres', 'orig', 'expc', 'missd', 'mergd', 'bad', 'doubl', 'corrt', 'GD', 'FP', 'GD-merged', 'FP-pruned', 'prec', 'recl', 'dist' ] taskonset.formats = ["%12s" , "| %6s", "| %6s", "| %6s", "| %6s", "| %6s", "| %6s", "| %6s", "| %6s", "| %8s", "| %8s", "| %8s", "| %8s", "| %6s", "| %6s", "| %6s"] #taskonset.run_bench(modes=modes,thresholds=thresholds) taskonset.auto_learn(modes=modes) # gatherdata #act_on_data(my_print,datapath,respath,suffix='.txt',filter='f -name \'*.wav\'') # gatherthreshold # gathermodes # comparediffs # gatherdiffs