ref: 89bc6f4938d3c1e41e351d7cd8314ed3fb3cd433
dir: /python/demos/demo_timestretch_online.py/
#! /usr/bin/env python # Implementation of the timescale algorithm according to Dan Ellis, *A Phase # Vocoder in Matlab*. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ # This file performs both analysis and synthesis in a single pass. See also # `demo_timestretch.py` for a version following the original implementation. import sys from aubio import source, sink, pvoc, cvec from aubio import unwrap2pi, float_type import numpy as np win_s = 512 hop_s = win_s // 8 # 87.5 % overlap warmup = win_s // hop_s - 1 if len(sys.argv) < 3: print("Usage: {:s} <source_filename> <output_filename> <rate> [samplerate]".format(sys.argv[0])) print("""Examples: # twice faster {0} track_01.mp3 track_01_faster.wav 2.0 # twice slower {0} track_02.flac track_02_slower.wav 0.5 # one and a half time faster, resampling first the input to 22050 {0} track_02.flac track_02_slower.wav 1.5 22050""".format(sys.argv[0])) sys.exit(1) source_filename = sys.argv[1] output_filename = sys.argv[2] rate = float(sys.argv[3]) samplerate = 0 if len(sys.argv) < 5 else int(sys.argv[4]) source_in = source(source_filename, samplerate, hop_s) samplerate = source_in.samplerate p = pvoc(win_s, hop_s) sink_out = sink(output_filename, samplerate) # excepted phase advance in each bin phi_advance = np.linspace(0, np.pi * hop_s, win_s / 2 + 1).astype (float_type) old_grain = cvec(win_s) new_grain = cvec(win_s) block_read = 0 interp_read = 0 interp_block = 0 while True: samples, read = source_in() cur_grain = p(samples) if block_read == 1: phas_acc = old_grain.phas #print "block_read", block_read while True and (block_read > 0): if interp_read >= block_read: break #print "`--- interp_block:", interp_block, #print 'at orig_block', interp_read, '<- from', block_read - 1, block_read, #print 'old_grain', old_grain, 'cur_grain', cur_grain # time to compute interp grain frac = 1. - np.mod(interp_read, 1.0) # compute interpolated frame new_grain.norm = frac * old_grain.norm + (1. - frac) * cur_grain.norm new_grain.phas = phas_acc # psola samples = p.rdo(new_grain) if interp_read > warmup: # skip the first frames to warm up phase vocoder # write to sink sink_out(samples, hop_s) # calculate phase advance dphas = cur_grain.phas - old_grain.phas - phi_advance # unwrap angle to [-pi; pi] dphas = unwrap2pi(dphas) # cumulate phase, to be used for next frame phas_acc += phi_advance + dphas # prepare for next interp block interp_block += 1 interp_read = interp_block * rate if interp_read >= block_read: break # copy cur_grain to old_grain old_grain.norm = np.copy(cur_grain.norm) old_grain.phas = np.copy(cur_grain.phas) # until end of file if read < hop_s: break # increment block counter block_read += 1 for t in range(warmup + 2): # purge the last frames from the phase vocoder new_grain.norm[:] = 0 new_grain.phas[:] = 0 samples = p.rdo(new_grain) sink_out(samples, read if t == warmup + 1 else hop_s) # just to make sure source_in.close() sink_out.close() format_out = "read {:d} blocks from {:s} at {:d}Hz and rate {:f}, wrote {:d} blocks to {:s}" print (format_out.format(block_read, source_filename, samplerate, rate, interp_block, output_filename))