ref: 89e9e713046f25b3fa8a7db3bb488ce43943652e
dir: /src/spectral/fft.c/
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>
This file is part of aubio.
aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#ifdef HAVE_FFTW3 // using FFTW3
/* note that <complex.h> is not included here but only in aubio_priv.h, so that
* c++ projects can still use their own complex definition. */
#include <fftw3.h>
#include <pthread.h>
#ifdef HAVE_COMPLEX_H
#ifdef HAVE_FFTW3F
/** fft data type with complex.h and fftw3f */
#define FFTW_TYPE fftwf_complex
#else
/** fft data type with complex.h and fftw3 */
#define FFTW_TYPE fftw_complex
#endif
#else
#ifdef HAVE_FFTW3F
/** fft data type without complex.h and with fftw3f */
#define FFTW_TYPE float
#else
/** fft data type without complex.h and with fftw */
#define FFTW_TYPE double
#endif
#endif
/** fft data type */
typedef FFTW_TYPE fft_data_t;
#ifdef HAVE_FFTW3F
#define fftw_malloc fftwf_malloc
#define fftw_free fftwf_free
#define fftw_execute fftwf_execute
#define fftw_plan_dft_r2c_1d fftwf_plan_dft_r2c_1d
#define fftw_plan_dft_c2r_1d fftwf_plan_dft_c2r_1d
#define fftw_plan_r2r_1d fftwf_plan_r2r_1d
#define fftw_plan fftwf_plan
#define fftw_destroy_plan fftwf_destroy_plan
#endif
#ifdef HAVE_FFTW3F
#if HAVE_AUBIO_DOUBLE
#warning "Using aubio in double precision with fftw3 in single precision"
#endif /* HAVE_AUBIO_DOUBLE */
#define real_t float
#else /* HAVE_FFTW3F */
#if !HAVE_AUBIO_DOUBLE
#warning "Using aubio in single precision with fftw3 in double precision"
#endif /* HAVE_AUBIO_DOUBLE */
#define real_t double
#endif /* HAVE_FFTW3F */
// a global mutex for FFTW thread safety
pthread_mutex_t aubio_fftw_mutex = PTHREAD_MUTEX_INITIALIZER;
#else
#ifdef HAVE_ACCELERATE // using ACCELERATE
// https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/vDSPRef/Reference/reference.html
#include <Accelerate/Accelerate.h>
#else // using OOURA
// let's use ooura instead
extern void rdft(int, int, smpl_t *, int *, smpl_t *);
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
struct _aubio_fft_t {
uint_t winsize;
uint_t fft_size;
#ifdef HAVE_FFTW3 // using FFTW3
real_t *in, *out;
fftw_plan pfw, pbw;
fft_data_t * specdata; /* complex spectral data */
#else
#ifdef HAVE_ACCELERATE // using ACCELERATE
int log2fftsize;
#if !HAVE_AUBIO_DOUBLE
FFTSetup fftSetup;
DSPSplitComplex spec;
float *in, *out;
#else
FFTSetupD fftSetup;
DSPDoubleSplitComplex spec;
double *in, *out;
#endif
#else // using OOURA
smpl_t *in, *out;
smpl_t *w;
int *ip;
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
fvec_t * compspec;
};
aubio_fft_t * new_aubio_fft (uint_t winsize) {
aubio_fft_t * s = AUBIO_NEW(aubio_fft_t);
#ifdef HAVE_FFTW3
uint_t i;
s->winsize = winsize;
/* allocate memory */
s->in = AUBIO_ARRAY(real_t,winsize);
s->out = AUBIO_ARRAY(real_t,winsize);
s->compspec = new_fvec(winsize);
/* create plans */
pthread_mutex_lock(&aubio_fftw_mutex);
#ifdef HAVE_COMPLEX_H
s->fft_size = winsize/2 + 1;
s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size);
s->pfw = fftw_plan_dft_r2c_1d(winsize, s->in, s->specdata, FFTW_ESTIMATE);
s->pbw = fftw_plan_dft_c2r_1d(winsize, s->specdata, s->out, FFTW_ESTIMATE);
#else
s->fft_size = winsize;
s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size);
s->pfw = fftw_plan_r2r_1d(winsize, s->in, s->specdata, FFTW_R2HC, FFTW_ESTIMATE);
s->pbw = fftw_plan_r2r_1d(winsize, s->specdata, s->out, FFTW_HC2R, FFTW_ESTIMATE);
#endif
pthread_mutex_unlock(&aubio_fftw_mutex);
for (i = 0; i < s->winsize; i++) {
s->in[i] = 0.;
s->out[i] = 0.;
}
for (i = 0; i < s->fft_size; i++) {
s->specdata[i] = 0.;
}
#else
#ifdef HAVE_ACCELERATE // using ACCELERATE
s->winsize = winsize;
s->fft_size = winsize;
s->compspec = new_fvec(winsize);
s->log2fftsize = (uint_t)log2f(s->fft_size);
#if !HAVE_AUBIO_DOUBLE
s->in = AUBIO_ARRAY(float, s->fft_size);
s->out = AUBIO_ARRAY(float, s->fft_size);
s->spec.realp = AUBIO_ARRAY(float, s->fft_size/2);
s->spec.imagp = AUBIO_ARRAY(float, s->fft_size/2);
s->fftSetup = vDSP_create_fftsetup(s->log2fftsize, FFT_RADIX2);
#else
s->in = AUBIO_ARRAY(double, s->fft_size);
s->out = AUBIO_ARRAY(double, s->fft_size);
s->spec.realp = AUBIO_ARRAY(double, s->fft_size/2);
s->spec.imagp = AUBIO_ARRAY(double, s->fft_size/2);
s->fftSetup = vDSP_create_fftsetupD(s->log2fftsize, FFT_RADIX2);
#endif
#else // using OOURA
s->winsize = winsize;
s->fft_size = winsize / 2 + 1;
s->compspec = new_fvec(winsize);
s->in = AUBIO_ARRAY(smpl_t, s->winsize);
s->out = AUBIO_ARRAY(smpl_t, s->winsize);
s->ip = AUBIO_ARRAY(int , s->fft_size);
s->w = AUBIO_ARRAY(smpl_t, s->fft_size);
s->ip[0] = 0;
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
return s;
}
void del_aubio_fft(aubio_fft_t * s) {
/* destroy data */
del_fvec(s->compspec);
#ifdef HAVE_FFTW3 // using FFTW3
fftw_destroy_plan(s->pfw);
fftw_destroy_plan(s->pbw);
fftw_free(s->specdata);
#else /* HAVE_FFTW3 */
#ifdef HAVE_ACCELERATE // using ACCELERATE
AUBIO_FREE(s->spec.realp);
AUBIO_FREE(s->spec.imagp);
#if !HAVE_AUBIO_DOUBLE
vDSP_destroy_fftsetup(s->fftSetup);
#else
vDSP_destroy_fftsetupD(s->fftSetup);
#endif
#else // using OOURA
AUBIO_FREE(s->w);
AUBIO_FREE(s->ip);
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
AUBIO_FREE(s->out);
AUBIO_FREE(s->in);
AUBIO_FREE(s);
}
void aubio_fft_do(aubio_fft_t * s, fvec_t * input, cvec_t * spectrum) {
aubio_fft_do_complex(s, input, s->compspec);
aubio_fft_get_spectrum(s->compspec, spectrum);
}
void aubio_fft_rdo(aubio_fft_t * s, cvec_t * spectrum, fvec_t * output) {
aubio_fft_get_realimag(spectrum, s->compspec);
aubio_fft_rdo_complex(s, s->compspec, output);
}
void aubio_fft_do_complex(aubio_fft_t * s, fvec_t * input, fvec_t * compspec) {
uint_t i;
for (i=0; i < s->winsize; i++) {
s->in[i] = input->data[i];
}
#ifdef HAVE_FFTW3 // using FFTW3
fftw_execute(s->pfw);
#ifdef HAVE_COMPLEX_H
compspec->data[0] = REAL(s->specdata[0]);
for (i = 1; i < s->fft_size -1 ; i++) {
compspec->data[i] = REAL(s->specdata[i]);
compspec->data[compspec->length - i] = IMAG(s->specdata[i]);
}
compspec->data[s->fft_size-1] = REAL(s->specdata[s->fft_size-1]);
#else /* HAVE_COMPLEX_H */
for (i = 0; i < s->fft_size; i++) {
compspec->data[i] = s->specdata[i];
}
#endif /* HAVE_COMPLEX_H */
#else /* HAVE_FFTW3 */
#ifdef HAVE_ACCELERATE // using ACCELERATE
#if !HAVE_AUBIO_DOUBLE
// convert real data to even/odd format used in vDSP
vDSP_ctoz((DSPComplex*)s->in, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
vDSP_fft_zrip(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_FORWARD);
#else
// convert real data to even/odd format used in vDSP
vDSP_ctozD((DSPDoubleComplex*)s->in, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
vDSP_fft_zripD(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_FORWARD);
#endif
// convert from vDSP complex split to [ r0, r1, ..., rN, iN-1, .., i2, i1]
compspec->data[0] = s->spec.realp[0];
compspec->data[s->fft_size / 2] = s->spec.imagp[0];
for (i = 1; i < s->fft_size / 2; i++) {
compspec->data[i] = s->spec.realp[i];
compspec->data[s->fft_size - i] = s->spec.imagp[i];
}
// apply scaling
smpl_t scale = 1./2.;
#if !HAVE_AUBIO_DOUBLE
vDSP_vsmul(compspec->data, 1, &scale, compspec->data, 1, s->fft_size);
#else
vDSP_vsmulD(compspec->data, 1, &scale, compspec->data, 1, s->fft_size);
#endif
#else // using OOURA
rdft(s->winsize, 1, s->in, s->ip, s->w);
compspec->data[0] = s->in[0];
compspec->data[s->winsize / 2] = s->in[1];
for (i = 1; i < s->fft_size - 1; i++) {
compspec->data[i] = s->in[2 * i];
compspec->data[s->winsize - i] = - s->in[2 * i + 1];
}
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
}
void aubio_fft_rdo_complex(aubio_fft_t * s, fvec_t * compspec, fvec_t * output) {
uint_t i;
#ifdef HAVE_FFTW3
const smpl_t renorm = 1./(smpl_t)s->winsize;
#ifdef HAVE_COMPLEX_H
s->specdata[0] = compspec->data[0];
for (i=1; i < s->fft_size - 1; i++) {
s->specdata[i] = compspec->data[i] +
I * compspec->data[compspec->length - i];
}
s->specdata[s->fft_size - 1] = compspec->data[s->fft_size - 1];
#else
for (i=0; i < s->fft_size; i++) {
s->specdata[i] = compspec->data[i];
}
#endif
fftw_execute(s->pbw);
for (i = 0; i < output->length; i++) {
output->data[i] = s->out[i]*renorm;
}
#else /* HAVE_FFTW3 */
#ifdef HAVE_ACCELERATE // using ACCELERATE
// convert from real imag [ r0, r1, ..., rN, iN-1, .., i2, i1]
// to vDSP packed format [ r0, rN, r1, i1, ..., rN-1, iN-1 ]
s->out[0] = compspec->data[0];
s->out[1] = compspec->data[s->winsize / 2];
for (i = 1; i < s->fft_size / 2; i++) {
s->out[2 * i] = compspec->data[i];
s->out[2 * i + 1] = compspec->data[s->winsize - i];
}
#if !HAVE_AUBIO_DOUBLE
// convert to split complex format used in vDSP
vDSP_ctoz((DSPComplex*)s->out, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
vDSP_fft_zrip(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_INVERSE);
// convert result to real output
vDSP_ztoc(&s->spec, 1, (DSPComplex*)output->data, 2, s->fft_size/2);
// apply scaling
smpl_t scale = 1.0 / s->winsize;
vDSP_vsmul(output->data, 1, &scale, output->data, 1, s->fft_size);
#else
// convert to split complex format used in vDSP
vDSP_ctozD((DSPDoubleComplex*)s->out, 2, &s->spec, 1, s->fft_size/2);
// compute the FFT
vDSP_fft_zripD(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_INVERSE);
// convert result to real output
vDSP_ztocD(&s->spec, 1, (DSPDoubleComplex*)output->data, 2, s->fft_size/2);
// apply scaling
smpl_t scale = 1.0 / s->winsize;
vDSP_vsmulD(output->data, 1, &scale, output->data, 1, s->fft_size);
#endif
#else // using OOURA
smpl_t scale = 2.0 / s->winsize;
s->out[0] = compspec->data[0];
s->out[1] = compspec->data[s->winsize / 2];
for (i = 1; i < s->fft_size - 1; i++) {
s->out[2 * i] = compspec->data[i];
s->out[2 * i + 1] = - compspec->data[s->winsize - i];
}
rdft(s->winsize, -1, s->out, s->ip, s->w);
for (i=0; i < s->winsize; i++) {
output->data[i] = s->out[i] * scale;
}
#endif /* HAVE_ACCELERATE */
#endif /* HAVE_FFTW3 */
}
void aubio_fft_get_spectrum(fvec_t * compspec, cvec_t * spectrum) {
aubio_fft_get_phas(compspec, spectrum);
aubio_fft_get_norm(compspec, spectrum);
}
void aubio_fft_get_realimag(cvec_t * spectrum, fvec_t * compspec) {
aubio_fft_get_imag(spectrum, compspec);
aubio_fft_get_real(spectrum, compspec);
}
void aubio_fft_get_phas(fvec_t * compspec, cvec_t * spectrum) {
uint_t i;
if (compspec->data[0] < 0) {
spectrum->phas[0] = PI;
} else {
spectrum->phas[0] = 0.;
}
for (i=1; i < spectrum->length - 1; i++) {
spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i],
compspec->data[i]);
}
if (compspec->data[compspec->length/2] < 0) {
spectrum->phas[spectrum->length - 1] = PI;
} else {
spectrum->phas[spectrum->length - 1] = 0.;
}
}
void aubio_fft_get_norm(fvec_t * compspec, cvec_t * spectrum) {
uint_t i = 0;
spectrum->norm[0] = ABS(compspec->data[0]);
for (i=1; i < spectrum->length - 1; i++) {
spectrum->norm[i] = SQRT(SQR(compspec->data[i])
+ SQR(compspec->data[compspec->length - i]) );
}
spectrum->norm[spectrum->length-1] =
ABS(compspec->data[compspec->length/2]);
}
void aubio_fft_get_imag(cvec_t * spectrum, fvec_t * compspec) {
uint_t i;
for (i = 1; i < ( compspec->length + 1 ) / 2 /*- 1 + 1*/; i++) {
compspec->data[compspec->length - i] =
spectrum->norm[i]*SIN(spectrum->phas[i]);
}
}
void aubio_fft_get_real(cvec_t * spectrum, fvec_t * compspec) {
uint_t i;
for (i = 0; i < compspec->length / 2 + 1; i++) {
compspec->data[i] =
spectrum->norm[i]*COS(spectrum->phas[i]);
}
}