ref: 8a4ccf72ab817cfb478ffcc00d89f4b96d6d69dc
dir: /src/pitch/pitchyinfast.c/
/*
Copyright (C) 2003-2017 Paul Brossier <piem@aubio.org>
This file is part of aubio.
aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.
*/
/* This algorithm was developed by A. de Cheveigné and H. Kawahara and
* published in:
*
* de Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency
* estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
*
* see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
*/
#include "aubio_priv.h"
#include "fvec.h"
#include "mathutils.h"
#include "cvec.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfast.h"
struct _aubio_pitchyinfast_t
{
fvec_t *yin;
smpl_t tol;
uint_t peak_pos;
fvec_t *tmpdata;
fvec_t *sqdiff;
fvec_t *kernel;
fvec_t *samples_fft;
fvec_t *kernel_fft;
aubio_fft_t *fft;
};
aubio_pitchyinfast_t *
new_aubio_pitchyinfast (uint_t bufsize)
{
aubio_pitchyinfast_t *o = AUBIO_NEW (aubio_pitchyinfast_t);
o->yin = new_fvec (bufsize / 2);
o->tmpdata = new_fvec (bufsize);
o->sqdiff = new_fvec (bufsize / 2);
o->kernel = new_fvec (bufsize);
o->samples_fft = new_fvec (bufsize);
o->kernel_fft = new_fvec (bufsize);
o->fft = new_aubio_fft (bufsize);
o->tol = 0.15;
o->peak_pos = 0;
return o;
}
void
del_aubio_pitchyinfast (aubio_pitchyinfast_t * o)
{
del_fvec (o->yin);
del_fvec (o->tmpdata);
del_fvec (o->sqdiff);
del_fvec (o->kernel);
del_fvec (o->samples_fft);
del_fvec (o->kernel_fft);
del_aubio_fft (o->fft);
AUBIO_FREE (o);
}
/* all the above in one */
void
aubio_pitchyinfast_do (aubio_pitchyinfast_t * o, const fvec_t * input, fvec_t * out)
{
const smpl_t tol = o->tol;
fvec_t* yin = o->yin;
const uint_t length = yin->length;
uint_t B = o->tmpdata->length;
uint_t W = o->yin->length; // B / 2
fvec_t tmp_slice, kernel_ptr;
uint_t tau;
sint_t period;
smpl_t tmp2 = 0.;
// compute r_t(0) + r_t+tau(0)
{
fvec_t *squares = o->tmpdata;
fvec_weighted_copy(input, input, squares);
#if 0
for (tau = 0; tau < W; tau++) {
tmp_slice.data = squares->data + tau;
tmp_slice.length = W;
o->sqdiff->data[tau] = fvec_sum(&tmp_slice);
}
#else
tmp_slice.data = squares->data;
tmp_slice.length = W;
o->sqdiff->data[0] = fvec_sum(&tmp_slice);
for (tau = 1; tau < W; tau++) {
o->sqdiff->data[tau] = o->sqdiff->data[tau-1];
o->sqdiff->data[tau] -= squares->data[tau-1];
o->sqdiff->data[tau] += squares->data[W+tau-1];
}
#endif
fvec_add(o->sqdiff, o->sqdiff->data[0]);
}
// compute r_t(tau) = -2.*ifft(fft(samples)*fft(samples[W-1::-1]))
{
fvec_t *compmul = o->tmpdata;
fvec_t *rt_of_tau = o->samples_fft;
aubio_fft_do_complex(o->fft, input, o->samples_fft);
// build kernel, take a copy of first half of samples
tmp_slice.data = input->data;
tmp_slice.length = W;
kernel_ptr.data = o->kernel->data + 1;
kernel_ptr.length = W;
fvec_copy(&tmp_slice, &kernel_ptr);
// reverse them
fvec_rev(&kernel_ptr);
// compute fft(kernel)
aubio_fft_do_complex(o->fft, o->kernel, o->kernel_fft);
// compute complex product
compmul->data[0] = o->kernel_fft->data[0] * o->samples_fft->data[0];
for (tau = 1; tau < W; tau++) {
compmul->data[tau] = o->kernel_fft->data[tau] * o->samples_fft->data[tau];
compmul->data[tau] -= o->kernel_fft->data[B-tau] * o->samples_fft->data[B-tau];
}
compmul->data[W] = o->kernel_fft->data[W] * o->samples_fft->data[W];
for (tau = 1; tau < W; tau++) {
compmul->data[B-tau] = o->kernel_fft->data[B-tau] * o->samples_fft->data[tau];
compmul->data[B-tau] += o->kernel_fft->data[tau] * o->samples_fft->data[B-tau];
}
// compute inverse fft
aubio_fft_rdo_complex(o->fft, compmul, rt_of_tau);
// compute square difference r_t(tau) = sqdiff - 2 * r_t_tau[W-1:-1]
for (tau = 0; tau < W; tau++) {
yin->data[tau] = o->sqdiff->data[tau] - 2. * rt_of_tau->data[tau+W];
}
}
// now build yin and look for first minimum
fvec_zeros(out);
yin->data[0] = 1.;
for (tau = 1; tau < length; tau++) {
tmp2 += yin->data[tau];
if (tmp2 != 0) {
yin->data[tau] *= tau / tmp2;
} else {
yin->data[tau] = 1.;
}
period = tau - 3;
if (tau > 4 && (yin->data[period] < tol) &&
(yin->data[period] < yin->data[period + 1])) {
o->peak_pos = (uint_t)period;
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
return;
}
}
// use global minimum
o->peak_pos = (uint_t)fvec_min_elem (yin);
out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos);
}
smpl_t
aubio_pitchyinfast_get_confidence (aubio_pitchyinfast_t * o) {
return 1. - o->yin->data[o->peak_pos];
}
uint_t
aubio_pitchyinfast_set_tolerance (aubio_pitchyinfast_t * o, smpl_t tol)
{
o->tol = tol;
return 0;
}
smpl_t
aubio_pitchyinfast_get_tolerance (aubio_pitchyinfast_t * o)
{
return o->tol;
}