ref: 965ea78a7a4aefa68e54f7c108e635740ed8b0fb
dir: /tests/demo/bench/tempo/demo-tempo/
#! /usr/bin/python """ this file was written by Paul Brossier it is released under the GNU/GPL license. """ import sys,time from aubio.task import taskbeat,taskparams from aubio.aubioclass import fvec, aubio_autocorr from aubio.gnuplot import gnuplot_create, gnuplot_addargs from aubio.aubiowrapper import * from math import exp,log usage = "usage: %s [options] -i soundfile" % sys.argv[0] def parse_args(): from optparse import OptionParser parser = OptionParser(usage=usage) parser.add_option("-i","--input", action="store", dest="filename", help="input sound file") parser.add_option("-n","--printframe", action="store", dest="printframe", default=-1, help="make a plot of the n_th frame") gnuplot_addargs(parser) (options, args) = parser.parse_args() if not options.filename: print "no file name given\n", usage sys.exit(1) return options, args def plotdata(x,y,plottitle="",**keyw): import Gnuplot return Gnuplot.Data(x, y, title="%s" % plottitle,**keyw) options, args = parse_args() filename = options.filename xsize = float(options.xsize) ysize = float(options.ysize) printframe = int(options.printframe) if options.outplot and printframe > 0: extension = options.outplot.split('.')[-1] outplot = '.'.join(options.outplot.split('.')[:-1]) else: extension = '' outplot = None f = gnuplot_create(outplot=outplot,extension=extension,options=options) params = taskparams() params.onsetmode = 'specdiff' task = taskbeat(filename,params=params) hopsize = params.hopsize bufsize = params.bufsize btstep = task.btstep winlen = task.btwinlen laglen = winlen/4 step = winlen/4 timesig = 0 maxnumelem = 4 gp = 0 counter = 0 flagconst = 0 constthresh = 3.901 g_var = 3.901 rp = 0 rp1 = 0 rp2 = 0 g_mu = 0 rayparam = 48/512.*winlen #t = [i for i in range(hopsize)] #tlong = [i for i in range(hopsize*(btstep-1))] #tall = [i for i in range(hopsize*btstep)] #a = [0 for i in range(hopsize*btstep)] dfx = [i for i in range(winlen)] dfframe = [0 for i in range(winlen)] dfrev = [0 for i in range(winlen)] acframe = [0 for i in range(winlen)] localacf = [0 for i in range(winlen)] inds = [0 for i in range(maxnumelem)] acx = [i for i in range(laglen)] acfout = [0 for i in range(laglen)] phwv = [0 for i in range(2*laglen)] phwvx = [i for i in range(2*laglen)] dfwvnorm = exp(log(2.0)*(winlen+2.)/rayparam); dfwv = [exp(log(2.)*(i+1.)/rayparam)/dfwvnorm for i in range(winlen)] gwv = [exp(-.5*(j+1.-g_mu)**2/g_var**2) for j in range(laglen)] rwv = [(i+1.)/rayparam**2 * exp(-(i+1.)**2 / (2.*rayparam)**2) for i in range(0,laglen)] acf = fvec(winlen,1) nrframe = 0 while (task.readsize == params.hopsize): task() #print task.pos2 #a[:-hopsize] = [i for i in a[-(btstep-1)*hopsize:]] #a[-hopsize:] = [task.myvec.get(i,0) for i in t] #g('set xrange [%f:%f]' % (t[0],t[-1])) #time.sleep(.2) if task.pos2==btstep-1: nrframe += 1 dfframe = [task.dfframe.get(i,0) for i in range(winlen)] if printframe == nrframe or printframe == -1: d = [[plotdata(range(-winlen,0),dfframe,plottitle="onset detection", with='lines')]] # start beattracking_do for i in range(winlen): dfrev[winlen-1-i] = 0. dfrev[winlen-1-i] = dfframe[i]*dfwv[i] aubio_autocorr(task.dfframe(),acf()); acframe = [acf.get(i,0) for i in range(winlen)] if not timesig: numelem = 4 else: numelem = timesig old = 0 acfout = [0 for i in range(winlen/4)] for i in range(1,laglen-1): for a in range(1,numelem+1): for b in range (1-a,a): acfout[i] += acframe[a*(i+1)+b-1] * 1./(2.*a-1.)*rwv[i] if old < acfout[i]: old = acfout[i] maxi = i rp = max(maxi,1); if printframe == nrframe or printframe == -1: rwvs = [rwv[i]*max(acframe) for i in range(len(rwv))] d += [[plotdata(acx,acfout,plottitle="comb filterbank", with='lines', axes='x1y1'), plotdata([rp,rp],[1.2*old,min(acfout)],plottitle="period", with='impulses', axes='x1y1'), plotdata(acx,rwvs,plottitle="L_w", with='lines', axes='x1y1')]] # getperiod inds = [0 for i in range(maxnumelem)] localacf = [0 for i in range(winlen)] period = 0 for a in range(1,4+1): for b in range(1-a,a): localacf[a*rp+b-1] = acframe[a*rp+b-1] for i in range(numelem): maxindex = 0 maxval = 0.0 for j in range(rp*(i+1)+i): if localacf[j] > maxval: maxval = localacf[j] maxind = j localacf[j] = 0 inds[i] = maxind for i in range(numelem): period += inds[i]/(i+1.) period = period/numelem #print "period", period # checkstate if gp: # context dependant model acfout = [0 for i in range(winlen/4)] old = 0 for i in range(laglen-1): for a in range(timesig): for b in range(1-a,a): acfout[i] += acframe[a*(i+1)+b-1] * gwv[i] if old < acfout[i]: old = acfout[i] maxi = i gp = maxi else: # general model gp = 0 #print "gp", gp if printframe == nrframe or printframe == -1: gwvs = [gwv[i]*max(acfout) for i in range(len(gwv))] d += [[plotdata(acx,acfout,plottitle="comb filterbank", with='lines', axes='x1y1'), plotdata(gp,old,plottitle="period", with='impulses', axes='x1y1'), plotdata(acx,gwvs,plottitle="L_{gw}", with='lines', axes='x1y1')]] if counter == 0: # initial step if abs(gp-rp) > 2.*constthresh: flagstep = 1 counter = 3 else: flagstep = 0 #print "flagstep", flagstep #print "rp2,rp1,rp", rp2,rp1,rp acfw = [dfframe[i]*dfwv[i] for i in range(winlen)] if counter == 1 and flagstep == 1: # "3rd frame after flagstep set" if abs(2.*rp-rp1- rp2) < constthresh: flagconst = 1 counter = 0 else: flagconst = 0 counter = 2 elif counter > 0: counter -= 1 rp2 = rp1; rp1 = rp if flagconst: # "first run of new hypothesis" gp = rp g_mu = gp timesig = 4 #FIXME gwv = [exp(-.5*(j+1.-g_mu)**2/g_var**2) for j in range(laglen)] flagconst = 0 bp = gp phwv = [1 for i in range(2*laglen)] elif timesig: # "contex dependant" bp = gp if step > lastbeat: phwv = [exp(-.5*(1.+j-step+lastbeat)**2/(bp/8.)) for j in range(2*laglen)] else: print "NOT using phase weighting" phwv = [1 for i in range(2*laglen)] else: # "initial state" bp = rp phwv = [1 for i in range(2*laglen)] while bp < 25: print "WARNING, doubling the beat period" bp *= 2 # phout = [0. for i in range(winlen)] kmax = int(winlen/float(bp)); old = 0 for i in range(bp): phout[i] = 0. for k in range(kmax): phout[i] += dfrev[i+bp*k] * phwv[i] if phout[i] > old: old = phout[i] maxi = i maxindex = maxi if (maxindex == winlen - 1): maxindex = 0 phase = 1 + maxindex i = 1 beat = bp - phase beats= [] if beat >= 0: beats.append(beat) while beat+bp < step: beat += bp beats.append(beat) lastbeat = beat #print beats, #print "the lastbeat is", lastbeat # plot all this if printframe == nrframe or printframe == -1: phwvs = [phwv[i]*max(phout) for i in range(len(phwv))] d += [[plotdata(range(-laglen,0),phwvs[laglen:0:-1],plottitle="A_{gw}", with='lines',axes='x1y1'), plotdata(range(-laglen,0),phout[laglen:0:-1],plottitle="df", with='lines'), plotdata(-phase,old,plottitle="phase", with='impulses', axes='x1y1'), plotdata([i for i in beats],[old for i in beats],plottitle="predicted", with='impulses') ]] #d += [[plotdata(dfx,dfwv,plottitle="phase weighting", with='lines', axes='x1y2'), # plotdata(dfx,dfrev,plottitle="df reverse", with='lines', axes='x1y1')]] #d += [[plotdata(dfx,phout,plottitle="phase", with='lines', axes='x1y2')]] #d += [[plotdata(dfx,dfwv,plottitle="phase weighting", with='lines', axes='x1y2'), # plotdata(dfx,dfrev,plottitle="df reverse", with='lines', axes='x1y1')]] #d += [[plotdata(dfx,phout,plottitle="phase", with='lines', axes='x1y2')]] f('set lmargin 4') f('set rmargin 4') f('set size %f,%f' % (1.0*xsize,1.0*ysize) ) f('set key spacing 1.3') f('set multiplot') f('set size %f,%f' % (1.0*xsize,0.33*ysize) ) f('set orig %f,%f' % (0.0*xsize,0.66*ysize) ) f('set xrange [%f:%f]' % (-winlen,0) ) f.title('Onset detection function') f.xlabel('time (df samples)') f.plot(*d[0]) f('set size %f,%f' % (0.5*xsize,0.33*ysize) ) f('set orig %f,%f' % (0.0*xsize,0.33*ysize) ) f('set xrange [%f:%f]' % (0,laglen) ) f.title('Period detection: Rayleygh weighting') f.xlabel('lag (df samples)') f.plot(*d[1]) f('set size %f,%f' % (0.5*xsize,0.33*ysize) ) f('set orig %f,%f' % (0.5*xsize,0.33*ysize) ) f('set xrange [%f:%f]' % (0,laglen) ) f.title('Period detection: Gaussian weighting') f.xlabel('lag (df samples)') f.plot(*d[2]) f('set size %f,%f' % (1.0*xsize,0.33*ysize) ) f('set orig %f,%f' % (0.0*xsize,0.00*ysize) ) f('set xrange [%f:%f]' % (-laglen,laglen) ) f.title('Phase detection and predicted beats') f.xlabel('time (df samples)') f.plot(*d[3]) f('set nomultiplot') if printframe == -1: a = sys.stdin.read() elif 0 < printframe and printframe < nrframe: break