ref: b50760734e6e06bb594067fd696f9e1a544b6e18
dir: /src/spectral/filterbank_mel.c/
/* Copyright (C) 2007-2009 Paul Brossier <piem@aubio.org> and Amaury Hazan <ahazan@iua.upf.edu> This file is part of Aubio. Aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Aubio. If not, see <http://www.gnu.org/licenses/>. */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "spectral/filterbank.h" #include "mathutils.h" void aubio_filterbank_set_mel_coeffs (aubio_filterbank_t * fb, smpl_t samplerate, smpl_t freq_min, smpl_t freq_max) { fvec_t *filters = aubio_filterbank_get_coeffs (fb); uint_t n_filters = filters->channels, win_s = filters->length; //slaney params smpl_t lowestFrequency = 133.3333; smpl_t linearSpacing = 66.66666666; smpl_t logSpacing = 1.0711703; uint_t linearFilters = 13; uint_t logFilters = 27; uint_t allFilters = linearFilters + logFilters; if (allFilters > n_filters) { AUBIO_WRN("not enough Mel filters, got %d but %d needed\n", n_filters, allFilters); } //buffers for computing filter frequencies fvec_t *freqs = new_fvec (allFilters + 2, 1); fvec_t *lower_freqs = new_fvec (allFilters, 1); fvec_t *upper_freqs = new_fvec (allFilters, 1); fvec_t *center_freqs = new_fvec (allFilters, 1); fvec_t *triangle_heights = new_fvec (allFilters, 1); //lookup table of each bin frequency in hz fvec_t *fft_freqs = new_fvec (win_s, 1); uint_t filter_cnt, bin_cnt; //first step: filling all the linear filter frequencies for (filter_cnt = 0; filter_cnt < linearFilters; filter_cnt++) { freqs->data[0][filter_cnt] = lowestFrequency + filter_cnt * linearSpacing; } smpl_t lastlinearCF = freqs->data[0][filter_cnt - 1]; //second step: filling all the log filter frequencies for (filter_cnt = 0; filter_cnt < logFilters + 2; filter_cnt++) { freqs->data[0][filter_cnt + linearFilters] = lastlinearCF * (POW(logSpacing, filter_cnt + 1)); } //Option 1. copying interesting values to lower_freqs, center_freqs and upper freqs arrays //TODO: would be nicer to have a reference to freqs->data, anyway we do not care in this init step for (filter_cnt = 0; filter_cnt < allFilters; filter_cnt++) { lower_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt]; center_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt + 1]; upper_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt + 2]; } //computing triangle heights so that each triangle has unit area for (filter_cnt = 0; filter_cnt < allFilters; filter_cnt++) { triangle_heights->data[0][filter_cnt] = 2. / (upper_freqs->data[0][filter_cnt] - lower_freqs->data[0][filter_cnt]); } //filling the fft_freqs lookup table, which assigns the frequency in hz to each bin for (bin_cnt = 0; bin_cnt < win_s; bin_cnt++) { fft_freqs->data[0][bin_cnt] = aubio_bintofreq (bin_cnt, samplerate, win_s); } /* zeroing begining of filter */ fvec_zeros(filters); /* building each filter table */ for (filter_cnt = 0; filter_cnt < n_filters; filter_cnt++) { /* skip first elements */ for (bin_cnt = 0; bin_cnt < win_s - 1; bin_cnt++) { if (fft_freqs->data[0][bin_cnt] <= lower_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt + 1] > lower_freqs->data[0][filter_cnt]) { break; } } bin_cnt++; /* compute positive slope step size */ smpl_t riseInc = triangle_heights->data[0][filter_cnt] / (center_freqs->data[0][filter_cnt] - lower_freqs->data[0][filter_cnt]); /* compute coefficients in positive slope */ for (; bin_cnt < win_s - 1; bin_cnt++) { filters->data[filter_cnt][bin_cnt] = (fft_freqs->data[0][bin_cnt] - lower_freqs->data[0][filter_cnt]) * riseInc; if (fft_freqs->data[0][bin_cnt + 1] > center_freqs->data[0][filter_cnt]) break; } bin_cnt++; /* compute negative slope step size */ smpl_t downInc = triangle_heights->data[0][filter_cnt] / (upper_freqs->data[0][filter_cnt] - center_freqs->data[0][filter_cnt]); /* compute coefficents in negative slope */ for (; bin_cnt < win_s - 1; bin_cnt++) { filters->data[filter_cnt][bin_cnt] += (upper_freqs->data[0][filter_cnt] - fft_freqs->data[0][bin_cnt]) * downInc; if (fft_freqs->data[0][bin_cnt + 1] > upper_freqs->data[0][filter_cnt]) break; } /* nothing else to do */ } /* destroy temporarly allocated vectors */ del_fvec (freqs); del_fvec (lower_freqs); del_fvec (upper_freqs); del_fvec (center_freqs); del_fvec (triangle_heights); del_fvec (fft_freqs); }