ref: b583b9fb673169ebbf37820ea93875f18679fdb1
dir: /src/pitch/pitchyinfft.c/
/*
Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>
This file is part of aubio.
aubio is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
aubio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with aubio. If not, see <http://www.gnu.org/licenses/>.
*/
#include "aubio_priv.h"
#include "fvec.h"
#include "cvec.h"
#include "mathutils.h"
#include "spectral/fft.h"
#include "pitch/pitchyinfft.h"
/** pitch yinfft structure */
struct _aubio_pitchyinfft_t
{
fvec_t *win; /**< temporal weighting window */
fvec_t *winput; /**< windowed spectrum */
cvec_t *res; /**< complex vector to compute square difference function */
fvec_t *sqrmag; /**< square difference function */
fvec_t *weight; /**< spectral weighting window (psychoacoustic model) */
cvec_t *fftout; /**< Fourier transform output */
aubio_fft_t *fft; /**< fft object to compute square difference function */
fvec_t *yinfft; /**< Yin function */
smpl_t tol; /**< Yin tolerance */
};
static const smpl_t freqs[] = { 0., 20., 25., 31.5, 40., 50., 63., 80., 100.,
125., 160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250.,
1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000.,
12500., 15000., 20000., 25100
};
static const smpl_t weight[] = { -75.8, -70.1, -60.8, -52.1, -44.2, -37.5,
-31.3, -25.6, -20.9, -16.5, -12.6, -9.6, -7.0, -4.7, -3.0, -1.8, -0.8,
-0.2, -0.0, 0.5, 1.6, 3.2, 5.4, 7.8, 8.1, 5.3, -2.4, -11.1, -12.8,
-12.2, -7.4, -17.8, -17.8, -17.8
};
aubio_pitchyinfft_t *
new_aubio_pitchyinfft (uint_t bufsize)
{
aubio_pitchyinfft_t *p = AUBIO_NEW (aubio_pitchyinfft_t);
p->winput = new_fvec (bufsize);
p->fft = new_aubio_fft (bufsize);
p->fftout = new_cvec (bufsize);
p->sqrmag = new_fvec (bufsize);
p->res = new_cvec (bufsize);
p->yinfft = new_fvec (bufsize / 2 + 1);
p->tol = 0.85;
p->win = new_aubio_window ("hanningz", bufsize);
p->weight = new_fvec (bufsize / 2 + 1);
uint_t i = 0, j = 1;
smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0;
for (i = 0; i < p->weight->length; i++) {
freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) 44100.;
while (freq > freqs[j]) {
j += 1;
}
a0 = weight[j - 1];
f0 = freqs[j - 1];
a1 = weight[j];
f1 = freqs[j];
if (f0 == f1) { // just in case
p->weight->data[i] = a0;
} else if (f0 == 0) { // y = ax+b
p->weight->data[i] = (a1 - a0) / f1 * freq + a0;
} else {
p->weight->data[i] = (a1 - a0) / (f1 - f0) * freq +
(a0 - (a1 - a0) / (f1 / f0 - 1.));
}
while (freq > freqs[j]) {
j += 1;
}
//AUBIO_DBG("%f\n",p->weight->data[i]);
p->weight->data[i] = DB2LIN (p->weight->data[i]);
//p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i]));
}
return p;
}
void
aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, fvec_t * input, fvec_t * output)
{
uint_t tau, l;
uint_t halfperiod;
smpl_t tmp, sum;
cvec_t *res = (cvec_t *) p->res;
fvec_t *yin = (fvec_t *) p->yinfft;
l = 0;
tmp = 0.;
sum = 0.;
for (l = 0; l < input->length; l++) {
p->winput->data[l] = p->win->data[l] * input->data[l];
}
aubio_fft_do (p->fft, p->winput, p->fftout);
for (l = 0; l < p->fftout->length; l++) {
p->sqrmag->data[l] = SQR (p->fftout->norm[l]);
p->sqrmag->data[l] *= p->weight->data[l];
}
for (l = 1; l < p->fftout->length; l++) {
p->sqrmag->data[(p->fftout->length - 1) * 2 - l] =
SQR (p->fftout->norm[l]);
p->sqrmag->data[(p->fftout->length - 1) * 2 - l] *=
p->weight->data[l];
}
for (l = 0; l < p->sqrmag->length / 2 + 1; l++) {
sum += p->sqrmag->data[l];
}
sum *= 2.;
aubio_fft_do (p->fft, p->sqrmag, res);
yin->data[0] = 1.;
for (tau = 1; tau < yin->length; tau++) {
yin->data[tau] = sum - res->norm[tau] * COS (res->phas[tau]);
tmp += yin->data[tau];
yin->data[tau] *= tau / tmp;
}
tau = fvec_min_elem (yin);
if (yin->data[tau] < p->tol) {
/* no interpolation */
//return tau;
/* 3 point quadratic interpolation */
//return fvec_quadint_min(yin,tau,1);
/* additional check for (unlikely) octave doubling in higher frequencies */
if (tau > 35) {
output->data[0] = fvec_quadint (yin, tau);
} else {
/* should compare the minimum value of each interpolated peaks */
halfperiod = FLOOR (tau / 2 + .5);
if (yin->data[halfperiod] < p->tol)
output->data[0] = fvec_quadint (yin, halfperiod);
else
output->data[0] = fvec_quadint (yin, tau);
}
} else {
output->data[0] = 0.;
}
}
void
del_aubio_pitchyinfft (aubio_pitchyinfft_t * p)
{
del_fvec (p->win);
del_aubio_fft (p->fft);
del_fvec (p->yinfft);
del_fvec (p->sqrmag);
del_cvec (p->res);
del_cvec (p->fftout);
del_fvec (p->winput);
del_fvec (p->weight);
AUBIO_FREE (p);
}
uint_t
aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol)
{
p->tol = tol;
return 0;
}
smpl_t
aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p)
{
return p->tol;
}