ref: cfd35dbe9ee20e0697abf8b3ffb2b7182b4e2b41
dir: /src/spectral/filterbank_mel.c/
/* Copyright (C) 2007-2009 Paul Brossier <piem@aubio.org> and Amaury Hazan <ahazan@iua.upf.edu> This file is part of Aubio. Aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Aubio. If not, see <http://www.gnu.org/licenses/>. */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "spectral/filterbank.h" #include "mathutils.h" void aubio_filterbank_set_mel_coeffs (aubio_filterbank_t * fb, uint_t samplerate, smpl_t freq_min, smpl_t freq_max) { fvec_t *filters = aubio_filterbank_get_coeffs (fb); uint_t n_filters = filters->channels, win_s = filters->length; //slaney params smpl_t lowestFrequency = 133.3333; smpl_t linearSpacing = 66.66666666; smpl_t logSpacing = 1.0711703; uint_t linearFilters = 13; uint_t logFilters = 27; uint_t allFilters = linearFilters + logFilters; //buffers for computing filter frequencies fvec_t *freqs = new_fvec (allFilters + 2, 1); fvec_t *lower_freqs = new_fvec (allFilters, 1); fvec_t *upper_freqs = new_fvec (allFilters, 1); fvec_t *center_freqs = new_fvec (allFilters, 1); fvec_t *triangle_heights = new_fvec (allFilters, 1); //lookup table of each bin frequency in hz fvec_t *fft_freqs = new_fvec (win_s, 1); uint_t filter_cnt, bin_cnt; //first step: filling all the linear filter frequencies for (filter_cnt = 0; filter_cnt < linearFilters; filter_cnt++) { freqs->data[0][filter_cnt] = lowestFrequency + filter_cnt * linearSpacing; } smpl_t lastlinearCF = freqs->data[0][filter_cnt - 1]; //second step: filling all the log filter frequencies for (filter_cnt = 0; filter_cnt < logFilters + 2; filter_cnt++) { freqs->data[0][filter_cnt + linearFilters] = lastlinearCF * (pow (logSpacing, filter_cnt + 1)); } //Option 1. copying interesting values to lower_freqs, center_freqs and upper freqs arrays //TODO: would be nicer to have a reference to freqs->data, anyway we do not care in this init step for (filter_cnt = 0; filter_cnt < allFilters; filter_cnt++) { lower_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt]; center_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt + 1]; upper_freqs->data[0][filter_cnt] = freqs->data[0][filter_cnt + 2]; } //computing triangle heights so that each triangle has unit area for (filter_cnt = 0; filter_cnt < allFilters; filter_cnt++) { triangle_heights->data[0][filter_cnt] = 2. / (upper_freqs->data[0][filter_cnt] - lower_freqs->data[0][filter_cnt]); } //AUBIO_DBG("filter tables frequencies\n"); //for(filter_cnt=0; filter_cnt<allFilters; filter_cnt++) // AUBIO_DBG("filter n. %d %f %f %f %f\n", // filter_cnt, lower_freqs->data[0][filter_cnt], // center_freqs->data[0][filter_cnt], upper_freqs->data[0][filter_cnt], // triangle_heights->data[0][filter_cnt]); //filling the fft_freqs lookup table, which assigns the frequency in hz to each bin for (bin_cnt = 0; bin_cnt < win_s; bin_cnt++) { fft_freqs->data[0][bin_cnt] = aubio_bintofreq (bin_cnt, samplerate, win_s); } //building each filter table for (filter_cnt = 0; filter_cnt < allFilters; filter_cnt++) { //TODO:check special case : lower freq =0 //calculating rise increment in mag/Hz smpl_t riseInc = triangle_heights->data[0][filter_cnt] / (center_freqs->data[0][filter_cnt] - lower_freqs->data[0][filter_cnt]); //zeroing begining of filter for (bin_cnt = 0; bin_cnt < win_s - 1; bin_cnt++) { filters->data[filter_cnt][bin_cnt] = 0.0; if (fft_freqs->data[0][bin_cnt] <= lower_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt + 1] > lower_freqs->data[0][filter_cnt]) { break; } } bin_cnt++; //positive slope for (; bin_cnt < win_s - 1; bin_cnt++) { filters->data[filter_cnt][bin_cnt] = (fft_freqs->data[0][bin_cnt] - lower_freqs->data[0][filter_cnt]) * riseInc; //if(fft_freqs->data[0][bin_cnt]<= center_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt]) if (fft_freqs->data[0][bin_cnt + 1] > center_freqs->data[0][filter_cnt]) break; } //bin_cnt++; //negative slope for (; bin_cnt < win_s - 1; bin_cnt++) { //checking whether last value is less than 0... smpl_t val = triangle_heights->data[0][filter_cnt] - (fft_freqs->data[0][bin_cnt] - center_freqs->data[0][filter_cnt]) * riseInc; if (val >= 0) filters->data[filter_cnt][bin_cnt] = val; else filters->data[filter_cnt][bin_cnt] = 0.0; //if(fft_freqs->data[0][bin_cnt]<= upper_freqs->data[0][bin_cnt] && fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt]) //TODO: CHECK whether bugfix correct if (fft_freqs->data[0][bin_cnt + 1] > upper_freqs->data[0][filter_cnt]) break; } //bin_cnt++; //zeroing tail for (; bin_cnt < win_s; bin_cnt++) filters->data[filter_cnt][bin_cnt] = 0.f; } /* destroy temporarly allocated vectors */ del_fvec (freqs); del_fvec (lower_freqs); del_fvec (upper_freqs); del_fvec (center_freqs); del_fvec (triangle_heights); del_fvec (fft_freqs); }