ref: d8c21a32aec0fd7e13fb8e45ee5f630dc7bce1dd
dir: /src/synth/wavetable.c/
/* Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org> This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see <http://www.gnu.org/licenses/>. */ #include "aubio_priv.h" #include "fvec.h" #include "fmat.h" #include "utils/parameter.h" #include "synth/wavetable.h" #define WAVETABLE_LEN 4096 struct _aubio_wavetable_t { uint_t samplerate; uint_t blocksize; uint_t wavetable_length; fvec_t *wavetable; uint_t playing; smpl_t last_pos; aubio_parameter_t *freq; aubio_parameter_t *amp; }; aubio_wavetable_t *new_aubio_wavetable(uint_t samplerate, uint_t blocksize) { uint_t i; aubio_wavetable_t *s = AUBIO_NEW(aubio_wavetable_t); if ((sint_t)samplerate <= 0) { AUBIO_ERR("Can not create wavetable with samplerate %d\n", samplerate); goto beach; } s->samplerate = samplerate; s->blocksize = blocksize; s->wavetable_length = WAVETABLE_LEN; s->wavetable = new_fvec(s->wavetable_length + 3); for (i = 0; i < s->wavetable_length; i++) { s->wavetable->data[i] = SIN(TWO_PI * i / (smpl_t) s->wavetable_length ); } s->wavetable->data[s->wavetable_length] = s->wavetable->data[0]; s->wavetable->data[s->wavetable_length + 1] = s->wavetable->data[1]; s->wavetable->data[s->wavetable_length + 2] = s->wavetable->data[2]; s->playing = 0; s->last_pos = 0.; s->freq = new_aubio_parameter( 0., s->samplerate / 2., 10 ); s->amp = new_aubio_parameter( 0., 1., 100 ); return s; beach: AUBIO_FREE(s); return NULL; } static smpl_t interp_2(const fvec_t *input, smpl_t pos) { uint_t idx = (uint_t)FLOOR(pos); smpl_t frac = pos - (smpl_t)idx; smpl_t a = input->data[idx]; smpl_t b = input->data[idx + 1]; return a + frac * ( b - a ); } void aubio_wavetable_do ( aubio_wavetable_t * s, const fvec_t * input, fvec_t * output) { uint_t i; if (s->playing) { smpl_t pos = s->last_pos; for (i = 0; i < output->length; i++) { smpl_t inc = aubio_parameter_get_next_value( s->freq ); inc *= (smpl_t)(s->wavetable_length) / (smpl_t) (s->samplerate); pos += inc; while (pos > s->wavetable_length) { pos -= s->wavetable_length; } output->data[i] = aubio_parameter_get_next_value ( s->amp ); output->data[i] *= interp_2(s->wavetable, pos); } s->last_pos = pos; } else { for (i = 0; i < output->length; i++) { aubio_parameter_get_next_value ( s->freq ); aubio_parameter_get_next_value ( s->amp ); } fvec_zeros (output); } // add input to output if needed if (input && input != output) { for (i = 0; i < output->length; i++) { output->data[i] += input->data[i]; } fvec_clamp(output, 1.); } } void aubio_wavetable_do_multi ( aubio_wavetable_t * s, const fmat_t * input, fmat_t * output) { uint_t i, j; if (s->playing) { smpl_t pos = s->last_pos; for (j = 0; j < output->length; j++) { smpl_t inc = aubio_parameter_get_next_value( s->freq ); smpl_t amp = aubio_parameter_get_next_value ( s->amp ); inc *= (smpl_t)(s->wavetable_length) / (smpl_t) (s->samplerate); pos += inc; while (pos > s->wavetable_length) { pos -= s->wavetable_length; } for (i = 0; i < output->height; i++) { output->data[i][j] = amp * interp_2(s->wavetable, pos); } } s->last_pos = pos; } else { for (j = 0; j < output->length; j++) { aubio_parameter_get_next_value ( s->freq ); aubio_parameter_get_next_value ( s->amp ); } fmat_zeros (output); } // add output to input if needed if (input && input != output) { for (i = 0; i < output->height; i++) { for (j = 0; j < output->length; j++) { output->data[i][j] += input->data[i][j]; } } } } uint_t aubio_wavetable_get_playing ( const aubio_wavetable_t * s ) { return s->playing; } uint_t aubio_wavetable_set_playing ( aubio_wavetable_t * s, uint_t playing ) { s->playing = (playing == 1) ? 1 : 0; return 0; } uint_t aubio_wavetable_play ( aubio_wavetable_t * s ) { aubio_wavetable_set_amp (s, 0.7); return aubio_wavetable_set_playing (s, 1); } uint_t aubio_wavetable_stop ( aubio_wavetable_t * s ) { //aubio_wavetable_set_freq (s, 0.); aubio_wavetable_set_amp (s, 0.); //s->last_pos = 0; return aubio_wavetable_set_playing (s, 0); } uint_t aubio_wavetable_load ( aubio_wavetable_t *s UNUSED, const char_t *uri UNUSED) { USED(s, uri); AUBIO_ERR("wavetable: load method not implemented yet, see sampler\n"); return AUBIO_FAIL; } uint_t aubio_wavetable_set_freq ( aubio_wavetable_t * s, smpl_t freq ) { return aubio_parameter_set_target_value ( s->freq, freq ); } smpl_t aubio_wavetable_get_freq ( const aubio_wavetable_t * s) { return aubio_parameter_get_current_value ( s->freq); } uint_t aubio_wavetable_set_amp ( aubio_wavetable_t * s, smpl_t amp ) { return aubio_parameter_set_target_value ( s->amp, amp ); } smpl_t aubio_wavetable_get_amp ( const aubio_wavetable_t * s) { return aubio_parameter_get_current_value ( s->amp ); } void del_aubio_wavetable( aubio_wavetable_t * s ) { del_aubio_parameter(s->freq); del_aubio_parameter(s->amp); del_fvec(s->wavetable); AUBIO_FREE(s); }