ref: dba3b1ace5cebfb9714e8f32f13d056040a6db77
dir: /src/pitchfcomb.c/
/* Copyright (C) 2004, 2005 Mario Lang <mlang@delysid.org> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* This file was taken from the tuneit project, in the file tuneit.c -- Detect fundamental frequency of a sound see http://delysid.org/tuneit.html a fast harmonic comb filter algorithm for pitch tracking */ #include "aubio_priv.h" #include "sample.h" #include "mathutils.h" #include "phasevoc.h" #include "pitchfcomb.h" #define MAX_PEAKS 8 typedef struct { smpl_t freq; smpl_t db; } aubio_fpeak_t; struct _aubio_pitchfcomb_t { uint_t fftSize; uint_t rate; cvec_t * fftOut; fvec_t * fftLastPhase; aubio_pvoc_t * pvoc; }; aubio_pitchfcomb_t * new_aubio_pitchfcomb (uint_t size, uint_t samplerate) { aubio_pitchfcomb_t * p = AUBIO_NEW(aubio_pitchfcomb_t); uint_t overlap_rate = 4; p->rate = samplerate; p->fftSize = size; p->fftOut = new_cvec(size,1); p->fftLastPhase = new_fvec(size,1); p->pvoc = new_aubio_pvoc(size, size/overlap_rate, 1); return p; } /* input must be stepsize long */ smpl_t aubio_pitchfcomb_detect (aubio_pitchfcomb_t * p, fvec_t * input) { uint_t k, l, maxharm = 0, stepSize = input->length; smpl_t freqPerBin = p->rate/(smpl_t)p->fftSize, phaseDifference = TWO_PI*(smpl_t)stepSize/(smpl_t)p->fftSize; aubio_fpeak_t peaks[MAX_PEAKS]; for (k=0; k<MAX_PEAKS; k++) { peaks[k].db = -200.; peaks[k].freq = 0.; } aubio_pvoc_do (p->pvoc, input, p->fftOut); for (k=0; k<=p->fftSize; k++) { //long qpd; smpl_t magnitude = 20.*LOG10(2.*p->fftOut->norm[0][k]/(smpl_t)p->fftSize), phase = p->fftOut->phas[0][k], tmp, freq; /* compute phase difference */ tmp = phase - p->fftLastPhase->data[0][k]; p->fftLastPhase->data[0][k] = phase; /* subtract expected phase difference */ tmp -= (smpl_t)k*phaseDifference; /* map delta phase into +/- Pi interval */ tmp = unwrap2pi(tmp); /* get deviation from bin frequency from the +/- Pi interval */ tmp = p->fftSize/input->length*tmp/(TWO_PI); /* compute the k-th partials' true frequency */ freq = (smpl_t)k*freqPerBin + tmp*freqPerBin; if (freq > 0.0 && magnitude > peaks[0].db && magnitude < 0) { memmove(peaks+1, peaks, sizeof(aubio_fpeak_t)*(MAX_PEAKS-1)); peaks[0].freq = freq; peaks[0].db = magnitude; } } k = 0; for (l=1; l<MAX_PEAKS && peaks[l].freq > 0.0; l++) { sint_t harmonic; for (harmonic=5; harmonic>1; harmonic--) { if (peaks[0].freq / peaks[l].freq < harmonic+.02 && peaks[0].freq / peaks[l].freq > harmonic-.02) { if (harmonic > maxharm && peaks[0].db < peaks[l].db/2) { maxharm = harmonic; k = l; } } } } /* quick hack to clean output a bit */ if (peaks[k].freq > 10000) return 0.; return peaks[k].freq; } void del_aubio_pitchfcomb (aubio_pitchfcomb_t * p) { del_cvec(p->fftOut); del_fvec(p->fftLastPhase); del_aubio_pvoc(p->pvoc); AUBIO_FREE(p); }