ref: ef7df7698cf744f3d43859eb304e4ea4d69d4bfa
dir: /src/mathutils.c/
/* Copyright (C) 2003 Paul Brossier This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* see in mathutils.h for doc */ #include "aubio_priv.h" #include "sample.h" #include "mathutils.h" #include "config.h" void aubio_window(smpl_t *w, uint_t size, aubio_window_type wintype) { uint_t i; switch(wintype) { case aubio_win_rectangle: for (i=0;i<size;i++) w[i] = 0.5; break; case aubio_win_hamming: for (i=0;i<size;i++) w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size)); break; case aubio_win_hanning: for (i=0;i<size;i++) w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size))); break; case aubio_win_hanningz: for (i=0;i<size;i++) w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size))); break; case aubio_win_blackman: for (i=0;i<size;i++) w[i] = 0.42 - 0.50 * COS( TWO_PI*i/(size-1.0)) + 0.08 * COS(2.0*TWO_PI*i/(size-1.0)); break; case aubio_win_blackman_harris: for (i=0;i<size;i++) w[i] = 0.35875 - 0.48829 * COS( TWO_PI*i/(size-1.0)) + 0.14128 * COS(2.0*TWO_PI*i/(size-1.0)) - 0.01168 * COS(3.0*TWO_PI*i/(size-1.0)); break; case aubio_win_gaussian: for (i=0;i<size;i++) w[i] = EXP(- 1.0 / SQR(size) * SQR(2.0*i-size)); break; case aubio_win_welch: for (i=0;i<size;i++) w[i] = 1.0 - SQR((2*i-size)/(size+1.0)); break; case aubio_win_parzen: for (i=0;i<size;i++) w[i] = 1.0 - ABS((2*i-size)/(size+1.0)); break; default: break; } } smpl_t aubio_unwrap2pi(smpl_t phase) { /* mod(phase+pi,-2pi)+pi */ return phase + TWO_PI * (1. + FLOOR(-(phase+PI)/TWO_PI)); } smpl_t vec_mean(fvec_t *s) { uint_t i,j; smpl_t tmp = 0.0f; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) tmp += s->data[i][j]; return tmp/(smpl_t)(s->length); } smpl_t vec_sum(fvec_t *s) { uint_t i,j; smpl_t tmp = 0.0f; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) tmp += s->data[i][j]; return tmp; } smpl_t vec_max(fvec_t *s) { uint_t i,j; smpl_t tmp = 0.0f; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) tmp = (tmp > s->data[i][j])? tmp : s->data[i][j]; return tmp; } smpl_t vec_min(fvec_t *s) { uint_t i,j; smpl_t tmp = s->data[0][0]; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; return tmp; } uint_t vec_min_elem(fvec_t *s) { uint_t i,j=0, pos=0.; smpl_t tmp = s->data[0][0]; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) { pos = (tmp < s->data[i][j])? pos : j; tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; } return pos; } uint_t vec_max_elem(fvec_t *s) { uint_t i,j=0, pos=0.; smpl_t tmp = 0.0f; for (i=0; i < s->channels; i++) for (j=0; j < s->length; j++) { pos = (tmp > s->data[i][j])? pos : j; tmp = (tmp > s->data[i][j])? tmp : s->data[i][j] ; } return pos; } void vec_shift(fvec_t *s) { uint_t i,j; //smpl_t tmp = 0.0f; for (i=0; i < s->channels; i++) for (j=0; j < s->length / 2 ; j++) { //tmp = s->data[i][j]; //s->data[i][j] = s->data[i][j+s->length/2]; //s->data[i][j+s->length/2] = tmp; ELEM_SWAP(s->data[i][j],s->data[i][j+s->length/2]); } } smpl_t vec_local_energy(fvec_t * f) { smpl_t locE = 0.; uint_t i,j; for (i=0;i<f->channels;i++) for (j=0;j<f->length;j++) locE+=SQR(f->data[i][j]); return locE; } smpl_t vec_local_hfc(fvec_t * f) { smpl_t locE = 0.; uint_t i,j; for (i=0;i<f->channels;i++) for (j=0;j<f->length;j++) locE+=(i+1)*f->data[i][j]; return locE; } smpl_t vec_alpha_norm(fvec_t * DF, smpl_t alpha) { smpl_t tmp = 0.; uint_t i,j; for (i=0;i<DF->channels;i++) for (j=0;j<DF->length;j++) tmp += POW(ABS(DF->data[i][j]),alpha); return POW(tmp/DF->length,1./alpha); } void vec_dc_removal(fvec_t * mag) { smpl_t mini = 0.; uint_t length = mag->length, i=0, j; mini = vec_min(mag); for (j=0;j<length;j++) { mag->data[i][j] -= mini; } } void vec_alpha_normalise(fvec_t * mag, uint_t alpha) { smpl_t alphan = 1.; uint_t length = mag->length, i=0, j; alphan = vec_alpha_norm(mag,alpha); for (j=0;j<length;j++){ mag->data[i][j] /= alphan; } } void vec_add(fvec_t * mag, smpl_t threshold) { uint_t length = mag->length, i=0, j; for (j=0;j<length;j++) { mag->data[i][j] += threshold; } } void vec_adapt_thres(fvec_t * vec, fvec_t * tmp, uint_t post, uint_t pre) { uint_t length = vec->length, i=0, j; for (j=0;j<length;j++) { vec->data[i][j] -= vec_moving_thres(vec, tmp, post, pre, j); } } smpl_t vec_moving_thres(fvec_t * vec, fvec_t * tmpvec, uint_t post, uint_t pre, uint_t pos) { smpl_t * medar = (smpl_t *)tmpvec->data[0]; uint_t k; uint_t win_length = post+pre+1; uint_t length = vec->length; /* post part of the buffer does not exist */ if (pos<post+1) { for (k=0;k<post+1-pos;k++) medar[k] = 0.; /* 0-padding at the beginning */ for (k=post+1-pos;k<win_length;k++) medar[k] = vec->data[0][k+pos-post]; /* the buffer is fully defined */ } else if (pos+pre<length) { for (k=0;k<win_length;k++) medar[k] = vec->data[0][k+pos-post]; /* pre part of the buffer does not exist */ } else { for (k=0;k<length-pos+post+1;k++) medar[k] = vec->data[0][k+pos-post]; for (k=length-pos+post+1;k<win_length;k++) medar[k] = 0.; /* 0-padding at the end */ } return vec_median(tmpvec); } smpl_t vec_median(fvec_t * input) { uint_t n = input->length; smpl_t * arr = (smpl_t *) input->data[0]; uint_t low, high ; uint_t median; uint_t middle, ll, hh; low = 0 ; high = n-1 ; median = (low + high) / 2; for (;;) { if (high <= low) /* One element only */ return arr[median] ; if (high == low + 1) { /* Two elements only */ if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ; return arr[median] ; } /* Find median of low, middle and high items; swap into position low */ middle = (low + high) / 2; if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]); if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]); if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ; /* Swap low item (now in position middle) into position (low+1) */ ELEM_SWAP(arr[middle], arr[low+1]) ; /* Nibble from each end towards middle, swapping items when stuck */ ll = low + 1; hh = high; for (;;) { do ll++; while (arr[low] > arr[ll]) ; do hh--; while (arr[hh] > arr[low]) ; if (hh < ll) break; ELEM_SWAP(arr[ll], arr[hh]) ; } /* Swap middle item (in position low) back into correct position */ ELEM_SWAP(arr[low], arr[hh]) ; /* Re-set active partition */ if (hh <= median) low = ll; if (hh >= median) high = hh - 1; } } smpl_t vec_quadint(fvec_t * x,uint_t pos) { uint_t span = 2; smpl_t step = 1./200.; /* hack : init resold to - something (in case x[pos+-span]<0)) */ smpl_t res, frac, s0, s1, s2, exactpos = (smpl_t)pos, resold = -1000.; if ((pos > span) && (pos < x->length-span)) { s0 = x->data[0][pos-span]; s1 = x->data[0][pos] ; s2 = x->data[0][pos+span]; /* increase frac */ for (frac = 0.; frac < 2.; frac = frac + step) { res = aubio_quadfrac(s0, s1, s2, frac); if (res > resold) resold = res; else { exactpos += (frac-step)*2. - 1.; break; } } } return exactpos; } smpl_t vec_quadint_min(fvec_t * x,uint_t pos, uint_t span) { smpl_t step = 1./200.; /* init resold to - something (in case x[pos+-span]<0)) */ smpl_t res, frac, s0, s1, s2, exactpos = (smpl_t)pos, resold = 100000.; if ((pos > span) && (pos < x->length-span)) { s0 = x->data[0][pos-span]; s1 = x->data[0][pos] ; s2 = x->data[0][pos+span]; /* increase frac */ for (frac = 0.; frac < 2.; frac = frac + step) { res = aubio_quadfrac(s0, s1, s2, frac); if (res < resold) { resold = res; } else { exactpos += (frac-step)*span - span/2.; break; } } } return exactpos; } smpl_t aubio_quadfrac(smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf) { smpl_t tmp = s0 + (pf/2.) * (pf * ( s0 - 2.*s1 + s2 ) - 3.*s0 + 4.*s1 - s2); return tmp; } uint_t vec_peakpick(fvec_t * onset, uint_t pos) { uint_t i=0, tmp=0; /*for (i=0;i<onset->channels;i++)*/ tmp = (onset->data[i][pos] > onset->data[i][pos-1] && onset->data[i][pos] > onset->data[i][pos+1] && onset->data[i][pos] > 0.); return tmp; } smpl_t aubio_freqtomidi(smpl_t freq) { /* log(freq/A-2)/log(2) */ smpl_t midi = freq/6.875; midi = LOG(midi)/0.69314718055995; midi *= 12; midi -= 3; return midi; } smpl_t aubio_miditofreq(smpl_t midi) { smpl_t freq = (midi+3.)/12.; freq = EXP(freq*0.69314718055995); freq *= 6.875; return freq; } smpl_t aubio_bintofreq(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { smpl_t freq = samplerate/fftsize; return freq*bin; } smpl_t aubio_bintomidi(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { smpl_t midi = aubio_bintofreq(bin,samplerate,fftsize); return aubio_freqtomidi(midi); } smpl_t aubio_freqtobin(smpl_t freq, smpl_t samplerate, smpl_t fftsize) { smpl_t bin = fftsize/samplerate; return freq*bin; } smpl_t aubio_miditobin(smpl_t midi, smpl_t samplerate, smpl_t fftsize) { smpl_t freq = aubio_miditofreq(midi); return aubio_freqtobin(freq,samplerate,fftsize); } /** returns 1 if wassilence is 0 and RMS(ibuf)<threshold * \bug mono */ uint_t aubio_silence_detection(fvec_t * ibuf, smpl_t threshold) { smpl_t loudness = 0; uint_t i=0,j; for (j=0;j<ibuf->length;j++) { loudness += SQR(ibuf->data[i][j]); } loudness = SQRT(loudness); loudness /= (smpl_t)ibuf->length; loudness = LIN2DB(loudness); return (loudness < threshold); } /** returns level log(RMS(ibuf)) if < threshold, 1 otherwise * \bug mono */ smpl_t aubio_level_detection(fvec_t * ibuf, smpl_t threshold) { smpl_t loudness = 0; uint_t i=0,j; for (j=0;j<ibuf->length;j++) { loudness += SQR(ibuf->data[i][j]); } loudness = SQRT(loudness); loudness /= (smpl_t)ibuf->length; loudness = LIN2DB(loudness); if (loudness < threshold) return 1.; else return loudness; } smpl_t aubio_zero_crossing_rate(fvec_t * input) { uint_t i=0,j; uint_t zcr = 0; for ( j = 1; j < input->length; j++ ) { // previous was negative if( input->data[i][j-1] <= 0. ) { if ( input->data[i][j] > 0. ) { zcr += 1; } //previous was positive } else if ( input->data[i][j] <= 0. ) { zcr += 1; } } return zcr/(smpl_t)input->length; } smpl_t aubio_spectral_centroid(cvec_t * spectrum, smpl_t samplerate) { uint_t i=0, j; smpl_t sum = 0., sc = 0.; for ( j = 0; j < spectrum->length; j++ ) { sum += spectrum->norm[i][j]; } if (sum == 0.) return 0.; for ( j = 0; j < spectrum->length; j++ ) { sc += (smpl_t)j * spectrum->norm[i][j]; } return sc / sum * samplerate / (smpl_t)(spectrum->length); } void aubio_autocorr(fvec_t * input, fvec_t * output) { uint_t i = 0, j = 0, length = input->length; smpl_t * data = input->data[0]; smpl_t * acf = output->data[0]; smpl_t tmp =0.; for(i=0;i<length;i++){ for(j=i;j<length;j++){ tmp += data[j-i]*data[j]; } acf[i] = tmp /(smpl_t)(length-i); tmp = 0.0; } } void aubio_cleanup(void) { #if FFTW3_SUPPORT fftw_cleanup(); #else #if FFTW3F_SUPPORT fftwf_cleanup(); #endif #endif }