ref: f8c75aaa3c89099bc4a46b325e4bbc5c8c82d106
dir: /src/tempo/beattracking.c/
/* Copyright (C) 2005-2009 Matthew Davies and Paul Brossier <piem@aubio.org> This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see <http://www.gnu.org/licenses/>. */ #include "aubio_priv.h" #include "fvec.h" #include "mathutils.h" #include "tempo/beattracking.h" /** define to 1 to print out tracking difficulties */ #define AUBIO_BEAT_WARNINGS 0 uint_t fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp); void aubio_beattracking_checkstate (aubio_beattracking_t * bt); struct _aubio_beattracking_t { uint_t hop_size; /** length of one tempo detection function sample, in audio samples */ uint_t samplerate; /** samplerate of the original signal */ fvec_t *rwv; /** rayleigh weighting for beat period in general model */ fvec_t *dfwv; /** exponential weighting for beat alignment in general model */ fvec_t *gwv; /** gaussian weighting for beat period in context dependant model */ fvec_t *phwv; /** gaussian weighting for beat alignment in context dependant model */ fvec_t *dfrev; /** reversed onset detection function */ fvec_t *acf; /** vector for autocorrelation function (of current detection function frame) */ fvec_t *acfout; /** store result of passing acf through s.i.c.f.b. */ fvec_t *phout; uint_t timesig; /** time signature of input, set to zero until context dependent model activated */ uint_t step; uint_t rayparam; /** Rayleigh parameter */ smpl_t lastbeat; sint_t counter; uint_t flagstep; smpl_t g_var; smpl_t gp; smpl_t bp; smpl_t rp; smpl_t rp1; smpl_t rp2; }; aubio_beattracking_t * new_aubio_beattracking (uint_t winlen, uint_t hop_size, uint_t samplerate) { aubio_beattracking_t *p = AUBIO_NEW (aubio_beattracking_t); uint_t i = 0; /* default value for rayleigh weighting - sets preferred tempo to 120bpm */ smpl_t rayparam = 60. * samplerate / 120. / hop_size; smpl_t dfwvnorm = EXP ((LOG (2.0) / rayparam) * (winlen + 2)); /* length over which beat period is found [128] */ uint_t laglen = winlen / 4; /* step increment - both in detection function samples -i.e. 11.6ms or * 1 onset frame [128] */ uint_t step = winlen / 4; /* 1.5 seconds */ p->hop_size = hop_size; p->samplerate = samplerate; p->lastbeat = 0; p->counter = 0; p->flagstep = 0; p->g_var = 3.901; // constthresh empirically derived! p->rp = 1; p->gp = 0; p->rayparam = rayparam; p->step = step; p->rwv = new_fvec (laglen); p->gwv = new_fvec (laglen); p->dfwv = new_fvec (winlen); p->dfrev = new_fvec (winlen); p->acf = new_fvec (winlen); p->acfout = new_fvec (laglen); p->phwv = new_fvec (2 * laglen); p->phout = new_fvec (winlen); p->timesig = 0; /* exponential weighting, dfwv = 0.5 when i = 43 */ for (i = 0; i < winlen; i++) { p->dfwv->data[i] = (EXP ((LOG (2.0) / rayparam) * (i + 1))) / dfwvnorm; } for (i = 0; i < (laglen); i++) { p->rwv->data[i] = ((smpl_t) (i + 1.) / SQR ((smpl_t) rayparam)) * EXP ((-SQR ((smpl_t) (i + 1.)) / (2. * SQR ((smpl_t) rayparam)))); } return p; } void del_aubio_beattracking (aubio_beattracking_t * p) { del_fvec (p->rwv); del_fvec (p->gwv); del_fvec (p->dfwv); del_fvec (p->dfrev); del_fvec (p->acf); del_fvec (p->acfout); del_fvec (p->phwv); del_fvec (p->phout); AUBIO_FREE (p); } void aubio_beattracking_do (aubio_beattracking_t * bt, const fvec_t * dfframe, fvec_t * output) { uint_t i, k; uint_t step = bt->step; uint_t laglen = bt->rwv->length; uint_t winlen = bt->dfwv->length; uint_t maxindex = 0; //number of harmonics in shift invariant comb filterbank uint_t numelem = 4; smpl_t phase; // beat alignment (step - lastbeat) smpl_t beat; // beat position smpl_t bp; // beat period uint_t a, b; // used to build shift invariant comb filterbank uint_t kmax; // number of elements used to find beat phase /* copy dfframe, apply detection function weighting, and revert */ fvec_copy (dfframe, bt->dfrev); fvec_weight (bt->dfrev, bt->dfwv); fvec_rev (bt->dfrev); /* compute autocorrelation function */ aubio_autocorr (dfframe, bt->acf); /* if timesig is unknown, use metrically unbiased version of filterbank */ if (!bt->timesig) { numelem = 4; } else { numelem = bt->timesig; } /* first and last output values are left intentionally as zero */ fvec_zeros (bt->acfout); /* compute shift invariant comb filterbank */ for (i = 1; i < laglen - 1; i++) { for (a = 1; a <= numelem; a++) { for (b = 1; b < 2 * a; b++) { bt->acfout->data[i] += bt->acf->data[i * a + b - 1] * 1. / (2. * a - 1.); } } } /* apply Rayleigh weight */ fvec_weight (bt->acfout, bt->rwv); /* find non-zero Rayleigh period */ maxindex = fvec_max_elem (bt->acfout); if (maxindex > 0 && maxindex < bt->acfout->length - 1) { bt->rp = fvec_quadratic_peak_pos (bt->acfout, maxindex); } else { bt->rp = bt->rayparam; } /* activate biased filterbank */ aubio_beattracking_checkstate (bt); #if 0 // debug metronome mode bt->bp = 36.9142; #endif bp = bt->bp; /* end of biased filterbank */ if (bp == 0) { fvec_zeros(output); return; } /* deliberate integer operation, could be set to 3 max eventually */ kmax = FLOOR (winlen / bp); /* initialize output */ fvec_zeros (bt->phout); for (i = 0; i < bp; i++) { for (k = 0; k < kmax; k++) { bt->phout->data[i] += bt->dfrev->data[i + (uint_t) ROUND (bp * k)]; } } fvec_weight (bt->phout, bt->phwv); /* find Rayleigh period */ maxindex = fvec_max_elem (bt->phout); if (maxindex >= winlen - 1) { #if AUBIO_BEAT_WARNINGS AUBIO_WRN ("no idea what this groove's phase is\n"); #endif /* AUBIO_BEAT_WARNINGS */ phase = step - bt->lastbeat; } else { phase = fvec_quadratic_peak_pos (bt->phout, maxindex); } /* take back one frame delay */ phase += 1.; #if 0 // debug metronome mode phase = step - bt->lastbeat; #endif /* reset output */ fvec_zeros (output); i = 1; beat = bp - phase; // AUBIO_DBG ("bp: %f, phase: %f, lastbeat: %f, step: %d, winlen: %d\n", // bp, phase, bt->lastbeat, step, winlen); /* the next beat will be earlier than 60% of the tempo period skip this one */ if ( ( step - bt->lastbeat - phase ) < -0.40 * bp ) { #if AUBIO_BEAT_WARNINGS AUBIO_WRN ("back off-beat error, skipping this beat\n"); #endif /* AUBIO_BEAT_WARNINGS */ beat += bp; } /* start counting the beats */ while (beat + bp < 0) { beat += bp; } if (beat >= 0) { //AUBIO_DBG ("beat: %d, %f, %f\n", i, bp, beat); output->data[i] = beat; i++; } while (beat + bp <= step) { beat += bp; //AUBIO_DBG ("beat: %d, %f, %f\n", i, bp, beat); output->data[i] = beat; i++; } bt->lastbeat = beat; /* store the number of beats in this frame as the first element */ output->data[0] = i; } uint_t fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp) { sint_t k = 0; smpl_t three_energy = 0., four_energy = 0.; if (gp < 2) return 4; if (acflen > 6 * gp + 2) { for (k = -2; k < 2; k++) { three_energy += acf->data[3 * gp + k]; four_energy += acf->data[4 * gp + k]; } } else { /*Expanded to be more accurate in time sig estimation */ for (k = -2; k < 2; k++) { three_energy += acf->data[3 * gp + k] + acf->data[6 * gp + k]; four_energy += acf->data[4 * gp + k] + acf->data[2 * gp + k]; } } return (three_energy > four_energy) ? 3 : 4; } void aubio_beattracking_checkstate (aubio_beattracking_t * bt) { uint_t i, j, a, b; uint_t flagconst = 0; sint_t counter = bt->counter; uint_t flagstep = bt->flagstep; smpl_t gp = bt->gp; smpl_t bp = bt->bp; smpl_t rp = bt->rp; smpl_t rp1 = bt->rp1; smpl_t rp2 = bt->rp2; uint_t laglen = bt->rwv->length; uint_t acflen = bt->acf->length; uint_t step = bt->step; fvec_t *acf = bt->acf; fvec_t *acfout = bt->acfout; if (gp) { // compute shift invariant comb filterbank fvec_zeros (acfout); for (i = 1; i < laglen - 1; i++) { for (a = 1; a <= bt->timesig; a++) { for (b = 1; b < 2 * a; b++) { acfout->data[i] += acf->data[i * a + b - 1]; } } } // since gp is set, gwv has been computed in previous checkstate fvec_weight (acfout, bt->gwv); gp = fvec_quadratic_peak_pos (acfout, fvec_max_elem (acfout)); } else { //still only using general model gp = 0; } //now look for step change - i.e. a difference between gp and rp that // is greater than 2*constthresh - always true in first case, since gp = 0 if (counter == 0) { if (ABS (gp - rp) > 2. * bt->g_var) { flagstep = 1; // have observed step change. counter = 3; // setup 3 frame counter } else { flagstep = 0; } } //i.e. 3rd frame after flagstep initially set if (counter == 1 && flagstep == 1) { //check for consistency between previous beatperiod values if (ABS (2 * rp - rp1 - rp2) < bt->g_var) { //if true, can activate context dependent model flagconst = 1; counter = 0; // reset counter and flagstep } else { //if not consistent, then don't flag consistency! flagconst = 0; counter = 2; // let it look next time } } else if (counter > 0) { //if counter doesn't = 1, counter = counter - 1; } rp2 = rp1; rp1 = rp; if (flagconst) { /* first run of new hypothesis */ gp = rp; bt->timesig = fvec_gettimesig (acf, acflen, gp); for (j = 0; j < laglen; j++) bt->gwv->data[j] = EXP (-.5 * SQR ((smpl_t) (j + 1. - gp)) / SQR (bt->g_var)); flagconst = 0; bp = gp; /* flat phase weighting */ fvec_ones (bt->phwv); } else if (bt->timesig) { /* context dependant model */ bp = gp; /* gaussian phase weighting */ if (step > bt->lastbeat) { for (j = 0; j < 2 * laglen; j++) { bt->phwv->data[j] = EXP (-.5 * SQR ((smpl_t) (1. + j - step + bt->lastbeat)) / (bp / 8.)); } } else { //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n", // step,bt->lastbeat); fvec_ones (bt->phwv); } } else { /* initial state */ bp = rp; /* flat phase weighting */ fvec_ones (bt->phwv); } /* do some further checks on the final bp value */ /* if tempo is > 206 bpm, half it */ while (0 < bp && bp < 25) { #if AUBIO_BEAT_WARNINGS AUBIO_WRN ("doubling from %f (%f bpm) to %f (%f bpm)\n", bp, 60.*44100./512./bp, bp/2., 60.*44100./512./bp/2. ); //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp); #endif /* AUBIO_BEAT_WARNINGS */ bp = bp * 2; } //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp); /* smoothing */ //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2); //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp); //bp2 = bp; //AUBIO_DBG("time signature: %d \n", bt->timesig); bt->counter = counter; bt->flagstep = flagstep; bt->gp = gp; bt->bp = bp; bt->rp1 = rp1; bt->rp2 = rp2; } smpl_t aubio_beattracking_get_period (const aubio_beattracking_t * bt) { return bt->hop_size * bt->bp; } smpl_t aubio_beattracking_get_period_s (const aubio_beattracking_t * bt) { return aubio_beattracking_get_period(bt) / (smpl_t) bt->samplerate; } smpl_t aubio_beattracking_get_bpm (const aubio_beattracking_t * bt) { if (bt->bp != 0) { return 60. / aubio_beattracking_get_period_s(bt); } else { return 0.; } } smpl_t aubio_beattracking_get_confidence (const aubio_beattracking_t * bt) { if (bt->gp) { smpl_t acf_sum = fvec_sum(bt->acfout); if (acf_sum != 0.) { return fvec_quadratic_peak_mag (bt->acfout, bt->gp) / acf_sum; } } return 0.; }