ref: 58a4ba072214e2b4a39d1d54821a426c2269e233
dir: /src/lr_apply_tmpl.c/
/* * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include <stdio.h> #include "common/intops.h" #include "src/lr_apply.h" enum LrRestorePlanes { LR_RESTORE_Y = 1 << 0, LR_RESTORE_U = 1 << 1, LR_RESTORE_V = 1 << 2, }; // The loop filter buffer stores 12 rows of pixels. A superblock block will // contain at most 2 stripes. Each stripe requires 4 rows pixels (2 above // and 2 below) the final 4 rows are used to swap the bottom of the last // stripe with the top of the next super block row. static void backup_lpf(const Dav1dFrameContext *const f, pixel *dst, const ptrdiff_t dst_stride, const pixel *src, const ptrdiff_t src_stride, const int ss_ver, const int sb128, int row, const int row_h, const int src_w, const int h, const int ss_hor) { const int dst_w = f->frame_hdr->super_res.enabled ? (f->frame_hdr->width[1] + ss_hor) >> ss_hor : src_w; // The first stripe of the frame is shorter by 8 luma pixel rows. int stripe_h = (64 - 8 * !row) >> ss_ver; if (row) { const int top = 4 << sb128; // Copy the top part of the stored loop filtered pixels from the // previous sb row needed above the first stripe of this sb row. pixel_copy(&dst[PXSTRIDE(dst_stride) * 0], &dst[PXSTRIDE(dst_stride) * top], dst_w); pixel_copy(&dst[PXSTRIDE(dst_stride) * 1], &dst[PXSTRIDE(dst_stride) * (top + 1)], dst_w); pixel_copy(&dst[PXSTRIDE(dst_stride) * 2], &dst[PXSTRIDE(dst_stride) * (top + 2)], dst_w); pixel_copy(&dst[PXSTRIDE(dst_stride) * 3], &dst[PXSTRIDE(dst_stride) * (top + 3)], dst_w); } dst += 4 * PXSTRIDE(dst_stride); src += (stripe_h - 2) * PXSTRIDE(src_stride); if (f->frame_hdr->super_res.enabled) { while (row + stripe_h <= row_h) { const int n_lines = 4 - (row + stripe_h + 1 == h); f->dsp->mc.resize(dst, dst_stride, src, src_stride, dst_w, src_w, n_lines, f->resize_step[ss_hor], f->resize_start[ss_hor] HIGHBD_CALL_SUFFIX); row += stripe_h; // unmodified stripe_h for the 1st stripe stripe_h = 64 >> ss_ver; src += stripe_h * PXSTRIDE(src_stride); dst += n_lines * PXSTRIDE(dst_stride); if (n_lines == 3) { pixel_copy(dst, &dst[-PXSTRIDE(dst_stride)], dst_w); dst += PXSTRIDE(dst_stride); } } } else { while (row + stripe_h <= row_h) { const int n_lines = 4 - (row + stripe_h + 1 == h); for (int i = 0; i < 4; i++) { pixel_copy(dst, i == n_lines ? &dst[-PXSTRIDE(dst_stride)] : src, src_w); dst += PXSTRIDE(dst_stride); src += PXSTRIDE(src_stride); } row += stripe_h; // unmodified stripe_h for the 1st stripe stripe_h = 64 >> ss_ver; src += (stripe_h - 4) * PXSTRIDE(src_stride); } } } void bytefn(dav1d_lr_copy_lpf)(Dav1dFrameContext *const f, /*const*/ pixel *const src[3], const int sby) { const int offset = 8 * !!sby; const ptrdiff_t *const src_stride = f->cur.stride; const ptrdiff_t lr_stride = ((f->sr_cur.p.p.w + 31) & ~31) * sizeof(pixel); // TODO Also check block level restore type to reduce copying. const int restore_planes = f->lf.restore_planes; if (restore_planes & LR_RESTORE_Y) { const int h = f->cur.p.h; const int w = f->bw << 2; const int row_h = imin((sby + 1) << (6 + f->seq_hdr->sb128), h - 1); const int y_stripe = (sby << (6 + f->seq_hdr->sb128)) - offset; backup_lpf(f, f->lf.lr_lpf_line[0], lr_stride, src[0] - offset * PXSTRIDE(src_stride[0]), src_stride[0], 0, f->seq_hdr->sb128, y_stripe, row_h, w, h, 0); } if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) { const int ss_ver = f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420; const int ss_hor = f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444; const int h = (f->cur.p.h + ss_ver) >> ss_ver; const int w = f->bw << (2 - ss_hor); const int row_h = imin((sby + 1) << ((6 - ss_ver) + f->seq_hdr->sb128), h - 1); const int offset_uv = offset >> ss_ver; const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr->sb128)) - offset_uv; if (restore_planes & LR_RESTORE_U) { backup_lpf(f, f->lf.lr_lpf_line[1], lr_stride, src[1] - offset_uv * PXSTRIDE(src_stride[1]), src_stride[1], ss_ver, f->seq_hdr->sb128, y_stripe, row_h, w, h, ss_hor); } if (restore_planes & LR_RESTORE_V) { backup_lpf(f, f->lf.lr_lpf_line[2], lr_stride, src[2] - offset_uv * PXSTRIDE(src_stride[1]), src_stride[1], ss_ver, f->seq_hdr->sb128, y_stripe, row_h, w, h, ss_hor); } } } static void lr_stripe(const Dav1dFrameContext *const f, pixel *p, const pixel (*left)[4], int x, int y, const int plane, const int unit_w, const int row_h, const Av1RestorationUnit *const lr, enum LrEdgeFlags edges) { const Dav1dDSPContext *const dsp = f->dsp; const int chroma = !!plane; const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420); const int sbrow_has_bottom = (edges & LR_HAVE_BOTTOM); const pixel *lpf = f->lf.lr_lpf_line[plane] + x; const ptrdiff_t p_stride = f->sr_cur.p.stride[chroma]; const ptrdiff_t lpf_stride = sizeof(pixel) * ((f->sr_cur.p.p.w + 31) & ~31); // The first stripe of the frame is shorter by 8 luma pixel rows. int stripe_h = imin((64 - 8 * !y) >> ss_ver, row_h - y); // FIXME [8] might be easier for SIMD int16_t filterh[7], filterv[7]; if (lr->type == DAV1D_RESTORATION_WIENER) { filterh[0] = filterh[6] = lr->filter_h[0]; filterh[1] = filterh[5] = lr->filter_h[1]; filterh[2] = filterh[4] = lr->filter_h[2]; filterh[3] = -((filterh[0] + filterh[1] + filterh[2]) * 2); filterv[0] = filterv[6] = lr->filter_v[0]; filterv[1] = filterv[5] = lr->filter_v[1]; filterv[2] = filterv[4] = lr->filter_v[2]; filterv[3] = -((filterv[0] + filterv[1] + filterv[2]) * 2); } while (y + stripe_h <= row_h) { // Change HAVE_BOTTOM bit in edges to (y + stripe_h != row_h) edges ^= (-(y + stripe_h != row_h) ^ edges) & LR_HAVE_BOTTOM; if (lr->type == DAV1D_RESTORATION_WIENER) { dsp->lr.wiener(p, p_stride, left, lpf, lpf_stride, unit_w, stripe_h, filterh, filterv, edges HIGHBD_CALL_SUFFIX); } else { assert(lr->type == DAV1D_RESTORATION_SGRPROJ); dsp->lr.selfguided(p, p_stride, left, lpf, lpf_stride, unit_w, stripe_h, lr->sgr_idx, lr->sgr_weights, edges HIGHBD_CALL_SUFFIX); } left += stripe_h; y += stripe_h; if (y + stripe_h > row_h && sbrow_has_bottom) break; p += stripe_h * PXSTRIDE(p_stride); edges |= LR_HAVE_TOP; stripe_h = imin(64 >> ss_ver, row_h - y); if (stripe_h == 0) break; lpf += 4 * PXSTRIDE(lpf_stride); } } static void backup4xU(pixel (*dst)[4], const pixel *src, const ptrdiff_t src_stride, int u) { for (; u > 0; u--, dst++, src += PXSTRIDE(src_stride)) pixel_copy(dst, src, 4); } static void lr_sbrow(const Dav1dFrameContext *const f, pixel *p, const int y, const int w, const int h, const int row_h, const int plane) { const int chroma = !!plane; const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420); const int ss_hor = chroma & (f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444); const ptrdiff_t p_stride = f->sr_cur.p.stride[chroma]; const int unit_size_log2 = f->frame_hdr->restoration.unit_size[!!plane]; const int unit_size = 1 << unit_size_log2; const int half_unit_size = unit_size >> 1; const int max_unit_size = unit_size + half_unit_size; // Y coordinate of the sbrow (y is 8 luma pixel rows above row_y) const int row_y = y + ((8 >> ss_ver) * !!y); // FIXME This is an ugly hack to lookup the proper AV1Filter unit for // chroma planes. Question: For Multithreaded decoding, is it better // to store the chroma LR information with collocated Luma information? // In other words. For a chroma restoration unit locate at 128,128 and // with a 4:2:0 chroma subsampling, do we store the filter information at // the AV1Filter unit located at (128,128) or (256,256) // TODO Support chroma subsampling. const int shift_hor = 7 - ss_hor; pixel pre_lr_border[2][128 + 8 /* maximum sbrow height is 128 + 8 rows offset */][4]; const Av1RestorationUnit *lr[2]; enum LrEdgeFlags edges = (y > 0 ? LR_HAVE_TOP : 0) | LR_HAVE_RIGHT | (row_h < h ? LR_HAVE_BOTTOM : 0); int aligned_unit_pos = row_y & ~(unit_size - 1); if (aligned_unit_pos && aligned_unit_pos + half_unit_size > h) aligned_unit_pos -= unit_size; aligned_unit_pos <<= ss_ver; const int sb_idx = (aligned_unit_pos >> 7) * f->sr_sb128w; const int unit_idx = ((aligned_unit_pos >> 6) & 1) << 1; lr[0] = &f->lf.lr_mask[sb_idx].lr[plane][unit_idx]; int restore = lr[0]->type != DAV1D_RESTORATION_NONE; int x = 0, bit = 0; for (; x + max_unit_size <= w; p += unit_size, edges |= LR_HAVE_LEFT, bit ^= 1) { const int next_x = x + unit_size; const int next_u_idx = unit_idx + ((next_x >> (shift_hor - 1)) & 1); lr[!bit] = &f->lf.lr_mask[sb_idx + (next_x >> shift_hor)].lr[plane][next_u_idx]; const int restore_next = lr[!bit]->type != DAV1D_RESTORATION_NONE; if (restore_next) backup4xU(pre_lr_border[bit], p + unit_size - 4, p_stride, row_h - y); if (restore) lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_size, row_h, lr[bit], edges); x = next_x; restore = restore_next; } if (restore) { edges &= ~LR_HAVE_RIGHT; const int unit_w = w - x; lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_w, row_h, lr[bit], edges); } } void bytefn(dav1d_lr_sbrow)(Dav1dFrameContext *const f, pixel *const dst[3], const int sby) { const int offset_y = 8 * !!sby; const ptrdiff_t *const dst_stride = f->sr_cur.p.stride; const int restore_planes = f->lf.restore_planes; if (restore_planes & LR_RESTORE_Y) { const int h = f->sr_cur.p.p.h; const int w = f->sr_cur.p.p.w; const int row_h = imin((sby + 1) << (6 + f->seq_hdr->sb128), h); const int y_stripe = (sby << (6 + f->seq_hdr->sb128)) - offset_y; lr_sbrow(f, dst[0] - offset_y * PXSTRIDE(dst_stride[0]), y_stripe, w, h, row_h, 0); } if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) { const int ss_ver = f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420; const int ss_hor = f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444; const int h = (f->sr_cur.p.p.h + ss_ver) >> ss_ver; const int w = (f->sr_cur.p.p.w + ss_hor) >> ss_hor; const int row_h = imin((sby + 1) << ((6 - ss_ver) + f->seq_hdr->sb128), h); const int offset_uv = offset_y >> ss_ver; const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr->sb128)) - offset_uv; if (restore_planes & LR_RESTORE_U) lr_sbrow(f, dst[1] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe, w, h, row_h, 1); if (restore_planes & LR_RESTORE_V) lr_sbrow(f, dst[2] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe, w, h, row_h, 2); } }