ref: 65b41008e4fbe9b10f116c03569651e896709811
dir: /src/lr_apply.c/
/* * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include <stdio.h> #include "common/intops.h" #include "src/lr_apply.h" enum LrRestorePlanes { LR_RESTORE_Y = 1 << 0, LR_RESTORE_U = 1 << 1, LR_RESTORE_V = 1 << 2, }; // The loop filter buffer stores 12 rows of pixels. A superblock block will // contain at most 2 stripes. Each stripe requires 4 rows pixels (2 above // and 2 below) the final 4 rows are used to swap the bottom of the last // stripe with the top of the next super block row. static void backup_lpf(pixel *dst, ptrdiff_t dst_stride, const pixel *src, ptrdiff_t src_stride, const int ss_ver, const int sb128, int row, const int row_h, const int w) { src_stride = PXSTRIDE(src_stride); dst_stride = PXSTRIDE(dst_stride); // The first stripe of the frame is shorter by 8 luma pixel rows. int stripe_h = (64 - 8 * !row) >> ss_ver; if (row) { const int top = 4 << sb128; // Copy the top part of the stored loop filtered pixels from the // previous sb row needed above the first stripe of this sb row. pixel_copy(&dst[dst_stride * 0], &dst[dst_stride * top], w); pixel_copy(&dst[dst_stride * 1], &dst[dst_stride * (top + 1)], w); pixel_copy(&dst[dst_stride * 2], &dst[dst_stride * (top + 2)], w); pixel_copy(&dst[dst_stride * 3], &dst[dst_stride * (top + 3)], w); } dst += 4 * dst_stride; src += (stripe_h - 2) * src_stride; for (; row + stripe_h <= row_h; row += stripe_h) { for (int i = 0; i < 4; i++) { pixel_copy(dst, src, w); dst += dst_stride; src += src_stride; } stripe_h = 64 >> ss_ver; src += (stripe_h - 4) * src_stride; } } void bytefn(dav1d_lr_copy_lpf)(Dav1dFrameContext *const f, /*const*/ pixel *const src[3], const int sby) { const ptrdiff_t offset = 8 * !!sby; const ptrdiff_t *const src_stride = f->cur.p.stride; // TODO Also check block level restore type to reduce copying. const int restore_planes = ((f->frame_hdr.restoration.type[0] != RESTORATION_NONE) << 0) + ((f->frame_hdr.restoration.type[1] != RESTORATION_NONE) << 1) + ((f->frame_hdr.restoration.type[2] != RESTORATION_NONE) << 2); if (restore_planes & LR_RESTORE_Y) { const int h = f->bh << 2; const int w = f->bw << 2; const int row_h = imin((sby + 1) << (6 + f->seq_hdr.sb128), h); const int y_stripe = (sby << (6 + f->seq_hdr.sb128)) - offset; backup_lpf(f->lf.lr_lpf_line_ptr[0], sizeof(pixel) * f->b4_stride * 4, src[0] - offset * PXSTRIDE(src_stride[0]), src_stride[0], 0, f->seq_hdr.sb128, y_stripe, row_h, w); } if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) { const int ss_ver = f->cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420; const int ss_hor = f->cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444; const int h = f->bh << (2 - ss_ver); const int w = f->bw << (2 - ss_hor); const int row_h = imin((sby + 1) << ((6 - ss_ver) + f->seq_hdr.sb128), h); const ptrdiff_t offset_uv = offset >> ss_ver; const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr.sb128)) - offset_uv; if (restore_planes & LR_RESTORE_U) { backup_lpf(f->lf.lr_lpf_line_ptr[1], sizeof(pixel) * f->b4_stride * 4, src[1] - offset_uv * PXSTRIDE(src_stride[1]), src_stride[1], ss_ver, f->seq_hdr.sb128, y_stripe, row_h, w); } if (restore_planes & LR_RESTORE_V) { backup_lpf(f->lf.lr_lpf_line_ptr[2], sizeof(pixel) * f->b4_stride * 4, src[2] - offset_uv * PXSTRIDE(src_stride[1]), src_stride[1], ss_ver, f->seq_hdr.sb128, y_stripe, row_h, w); } } } static void lr_stripe(const Dav1dFrameContext *const f, pixel *p, int x, int y, const int plane, const int unit_w, const int row_h, const Av1RestorationUnit *const lr, enum LrEdgeFlags edges) { const Dav1dDSPContext *const dsp = f->dsp; const int chroma = !!plane; const int ss_ver = chroma & (f->cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420); const int sbrow_has_bottom = (edges & LR_HAVE_BOTTOM); const pixel *lpf = f->lf.lr_lpf_line_ptr[plane] + x; const ptrdiff_t p_stride = f->cur.p.stride[chroma]; const ptrdiff_t lpf_stride = sizeof(pixel) * f->b4_stride * 4; // The first stripe of the frame is shorter by 8 luma pixel rows. int stripe_h = imin((64 - 8 * !y) >> ss_ver, row_h - y); // FIXME [8] might be easier for SIMD int16_t filterh[7], filterv[7]; if (lr->type == RESTORATION_WIENER) { filterh[0] = filterh[6] = lr->filter_h[0]; filterh[1] = filterh[5] = lr->filter_h[1]; filterh[2] = filterh[4] = lr->filter_h[2]; filterh[3] = -((filterh[0] + filterh[1] + filterh[2]) * 2); filterv[0] = filterv[6] = lr->filter_v[0]; filterv[1] = filterv[5] = lr->filter_v[1]; filterv[2] = filterv[4] = lr->filter_v[2]; filterv[3] = -((filterv[0] + filterv[1] + filterv[2]) * 2); } while (y + stripe_h <= row_h) { // TODO Look into getting rid of the this if if (y + stripe_h == row_h) { edges &= ~LR_HAVE_BOTTOM; } else { edges |= LR_HAVE_BOTTOM; } if (lr->type == RESTORATION_WIENER) { dsp->lr.wiener(p, p_stride, lpf, lpf_stride, unit_w, stripe_h, filterh, filterv, edges); } else { assert(lr->type == RESTORATION_SGRPROJ); dsp->lr.selfguided(p, p_stride, lpf, lpf_stride, unit_w, stripe_h, lr->sgr_idx, lr->sgr_weights, edges); } y += stripe_h; if (y + stripe_h > row_h && sbrow_has_bottom) break; p += stripe_h * PXSTRIDE(p_stride); edges |= LR_HAVE_TOP; stripe_h = imin(64 >> ss_ver, row_h - y); if (stripe_h == 0) break; lpf += 4 * PXSTRIDE(lpf_stride); } } static void backup3xU(pixel *dst, const pixel *src, const ptrdiff_t src_stride, int u) { for (; u > 0; u--, dst += 3, src += PXSTRIDE(src_stride)) pixel_copy(dst, src, 3); } static void restore3xU(pixel *dst, const ptrdiff_t dst_stride, const pixel *src, int u) { for (; u > 0; u--, dst += PXSTRIDE(dst_stride), src += 3) pixel_copy(dst, src, 3); } static void lr_sbrow(const Dav1dFrameContext *const f, pixel *p, const int y, const int w, const int h, const int row_h, const int plane) { const int chroma = !!plane; const int ss_ver = chroma & (f->cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420); const int ss_hor = chroma & (f->cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444); const ptrdiff_t p_stride = f->cur.p.stride[chroma]; const int unit_size_log2 = f->frame_hdr.restoration.unit_size[!!plane]; const int unit_size = 1 << unit_size_log2; const int half_unit_size = unit_size >> 1; const int max_unit_size = unit_size + half_unit_size; // Y coordinate of the sbrow (y is 8 luma pixel rows above row_y) const int row_y = y + ((8 >> ss_ver) * !!y); // FIXME This is an ugly hack to lookup the proper AV1Filter unit for // chroma planes. Question: For Multithreaded decoding, is it better // to store the chroma LR information with collocated Luma information? // In other words. For a chroma restoration unit locate at 128,128 and // with a 4:2:0 chroma subsampling, do we store the filter information at // the AV1Filter unit located at (128,128) or (256,256) // TODO Support chroma subsampling. const int shift_ver = 7 - ss_ver; const int shift_hor = 7 - ss_hor; int ruy = (row_y >> unit_size_log2); // Merge last restoration unit if its height is < half_unit_size if (ruy > 0) ruy -= (ruy << unit_size_log2) + half_unit_size > h; // The first stripe of the frame is shorter by 8 luma pixel rows. const int filter_h = imin(((1 << (6 + f->seq_hdr.sb128)) - 8 * !y) >> ss_ver, h - y); pixel pre_lr_border[filter_h * 3]; pixel post_lr_border[filter_h * 3]; int unit_w = unit_size; enum LrEdgeFlags edges = (y > 0 ? LR_HAVE_TOP : 0) | (row_h < h ? LR_HAVE_BOTTOM : 0); for (int x = 0, rux = 0; x < w; x+= unit_w, rux++, edges |= LR_HAVE_LEFT) { // TODO Clean up this if statement. if (x + max_unit_size > w) { unit_w = w - x; edges &= ~LR_HAVE_RIGHT; } else { edges |= LR_HAVE_RIGHT; } // Based on the position of the restoration unit, find the corresponding // AV1Filter unit. const int unit_idx = ((ruy & 16) >> 3) + ((rux & 16) >> 4); const Av1RestorationUnit *const lr = &f->lf.mask[(((ruy << (unit_size_log2)) >> shift_ver) * f->sb128w) + (x >> shift_hor)].lr[plane][unit_idx]; if (edges & LR_HAVE_LEFT) { restore3xU(p - 3, p_stride, pre_lr_border, filter_h); } // FIXME Don't backup if the next restoration unit is RESTORE_NONE // This also requires not restoring in the same conditions. if (edges & LR_HAVE_RIGHT) { backup3xU(pre_lr_border, p + unit_w - 3, p_stride, filter_h); } if (lr->type != RESTORATION_NONE) { lr_stripe(f, p, x, y, plane, unit_w, row_h, lr, edges); } if (edges & LR_HAVE_LEFT) { restore3xU(p - 3, p_stride, post_lr_border, filter_h); } if (edges & LR_HAVE_RIGHT) { backup3xU(post_lr_border, p + unit_w - 3, p_stride, filter_h); } p += unit_w; } } void bytefn(dav1d_lr_sbrow)(Dav1dFrameContext *const f, pixel *const dst[3], const int sby) { const ptrdiff_t offset_y = 8 * !!sby; const ptrdiff_t *const dst_stride = f->cur.p.stride; const int restore_planes = ((f->frame_hdr.restoration.type[0] != RESTORATION_NONE) << 0) + ((f->frame_hdr.restoration.type[1] != RESTORATION_NONE) << 1) + ((f->frame_hdr.restoration.type[2] != RESTORATION_NONE) << 2); if (restore_planes & LR_RESTORE_Y) { const int h = f->cur.p.p.h; const int w = f->cur.p.p.w; const int row_h = imin((sby + 1) << (6 + f->seq_hdr.sb128), h); const int y_stripe = (sby << (6 + f->seq_hdr.sb128)) - offset_y; lr_sbrow(f, dst[0] - offset_y * PXSTRIDE(dst_stride[0]), y_stripe, w, h, row_h, 0); } if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) { const int ss_ver = f->cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420; const int ss_hor = f->cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444; const int h = (f->cur.p.p.h + ss_ver) >> ss_ver; const int w = (f->cur.p.p.w + ss_hor) >> ss_hor; const int row_h = imin((sby + 1) << ((6 - ss_ver) + f->seq_hdr.sb128), h); const ptrdiff_t offset_uv = offset_y >> ss_ver; const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr.sb128)) - offset_uv; if (restore_planes & LR_RESTORE_U) lr_sbrow(f, dst[1] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe, w, h, row_h, 1); if (restore_planes & LR_RESTORE_V) lr_sbrow(f, dst[2] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe, w, h, row_h, 2); } }