ref: cab1803f1d6517754696b5c3d9b600e23ef9015e
dir: /src/it/readokt.c/
/* _______ ____ __ ___ ___ * \ _ \ \ / \ / \ \ / / ' ' ' * | | \ \ | | || | \/ | . . * | | | | | | || ||\ /| | * | | | | | | || || \/ | | ' ' ' * | | | | | | || || | | . . * | |_/ / \ \__// || | | * /_______/ynamic \____/niversal /__\ /____\usic /| . . ibliotheque * / \ * / . \ * readokt.c - Code to read an Oktalyzer module / / \ \ * from an open file. | < / \_ * | \/ /\ / * By Christopher Snowhill. \_ / > / * | \ / / * | ' / * \__/ */ #include <stdlib.h> #include <string.h> #include <math.h> #include "dumb.h" #include "internal/it.h" static int it_okt_read_pattern(IT_PATTERN *pattern, const unsigned char *data, int length, int n_channels) { int pos; int channel; int row; int n_rows; IT_ENTRY *entry; if (length < 2) return -1; n_rows = (data[0] << 8) | data[1]; if (!n_rows) n_rows = 64; if (length < 2 + (n_rows * n_channels * 4)) return -1; pattern->n_rows = n_rows; /* compute number of entries */ pattern->n_entries = n_rows; /* Account for the row end markers */ pos = 2; for (row = 0; row < pattern->n_rows; row++) { for (channel = 0; channel < n_channels; channel++) { if (data[pos + 0] | data[pos + 2]) pattern->n_entries++; pos += 4; } } pattern->entry = (IT_ENTRY *)malloc(pattern->n_entries * sizeof(*pattern->entry)); if (!pattern->entry) return -1; entry = pattern->entry; pos = 2; for (row = 0; row < n_rows; row++) { for (channel = 0; channel < n_channels; channel++) { if (data[pos + 0] | data[pos + 2]) { entry->channel = channel; entry->mask = 0; if (data[pos + 0] > 0 && data[pos + 0] <= 36) { entry->mask |= IT_ENTRY_NOTE | IT_ENTRY_INSTRUMENT; entry->note = data[pos + 0] + 35; entry->instrument = data[pos + 1] + 1; } entry->effect = 0; entry->effectvalue = data[pos + 3]; switch (data[pos + 2]) { case 2: if (data[pos + 3]) entry->effect = IT_PORTAMENTO_DOWN; break; // XXX code calls this rs_portu, but it's adding to // the period, which decreases the pitch case 13: if (data[pos + 3]) entry->effect = IT_OKT_NOTE_SLIDE_DOWN; break; case 21: if (data[pos + 3]) entry->effect = IT_OKT_NOTE_SLIDE_DOWN_ROW; break; case 1: if (data[pos + 3]) entry->effect = IT_PORTAMENTO_UP; break; // XXX same deal here, increasing the pitch case 17: if (data[pos + 3]) entry->effect = IT_OKT_NOTE_SLIDE_UP; break; case 30: if (data[pos + 3]) entry->effect = IT_OKT_NOTE_SLIDE_UP_ROW; break; case 10: if (data[pos + 3]) entry->effect = IT_OKT_ARPEGGIO_3; break; case 11: if (data[pos + 3]) entry->effect = IT_OKT_ARPEGGIO_4; break; case 12: if (data[pos + 3]) entry->effect = IT_OKT_ARPEGGIO_5; break; case 15: entry->effect = IT_S; entry->effectvalue = EFFECT_VALUE(IT_S_SET_FILTER, data[pos + 3] & 0x0F); break; case 25: entry->effect = IT_JUMP_TO_ORDER; break; case 27: entry->note = IT_NOTE_OFF; entry->mask |= IT_ENTRY_NOTE; break; case 28: entry->effect = IT_SET_SPEED; break; case 31: if (data[pos + 3] <= 0x40) entry->effect = IT_SET_CHANNEL_VOLUME; else if (data[pos + 3] <= 0x50) { entry->effect = IT_OKT_VOLUME_SLIDE_DOWN; entry->effectvalue = data[pos + 3] - 0x40; } else if (data[pos + 3] <= 0x60) { entry->effect = IT_OKT_VOLUME_SLIDE_UP; entry->effectvalue = data[pos + 3] - 0x50; } else if (data[pos + 3] <= 0x70) { entry->effect = IT_OKT_VOLUME_SLIDE_DOWN; entry->effectvalue = data[pos + 3] - 0x50; } else if (data[pos + 3] <= 0x80) { entry->effect = IT_OKT_VOLUME_SLIDE_UP; entry->effectvalue = data[pos + 3] - 0x60; } break; } if (entry->effect) entry->mask |= IT_ENTRY_EFFECT; entry++; } pos += 4; } IT_SET_END_ROW(entry); entry++; } return 0; } static void it_okt_read_sample_header(IT_SAMPLE *sample, const unsigned char *data) { int loop_start, loop_length; memcpy(sample->name, data, 20); sample->name[20] = 0; sample->filename[0] = 0; sample->length = (data[20] << 24) | (data[21] << 16) | (data[22] << 8) | data[23]; sample->global_volume = 64; sample->default_volume = data[29]; loop_start = ((data[24] << 8) | data[25]) << 1; loop_length = ((data[26] << 8) | data[27]) << 1; sample->sus_loop_start = loop_start; sample->sus_loop_end = loop_start + loop_length; if (sample->length <= 0) { sample->flags = 0; return; } sample->flags = IT_SAMPLE_EXISTS; sample->default_pan = 0; sample->C5_speed = (int)(AMIGA_CLOCK / 214.0); //(long)(16726.0*pow(DUMB_PITCH_BASE, finetune*32)); sample->finetune = 0; if (sample->sus_loop_end > sample->length) sample->sus_loop_end = sample->length; if (loop_length > 2) sample->flags |= IT_SAMPLE_SUS_LOOP; sample->vibrato_speed = 0; sample->vibrato_depth = 0; sample->vibrato_rate = 0; sample->vibrato_waveform = 0; // do we have to set _all_ these? sample->max_resampling_quality = -1; } static int it_okt_read_sample_data(IT_SAMPLE *sample, const char *data, int length) { if (length && sample->length) { if (length < sample->length) { sample->length = length; if (length < sample->sus_loop_end) sample->sus_loop_end = length; } sample->data = malloc(length); if (!sample->data) return -1; memcpy(sample->data, data, length); } return 0; } typedef struct IFF_CHUNK IFF_CHUNK; typedef struct IFF_CHUNKED IFF_CHUNKED; struct IFF_CHUNK { unsigned type; unsigned char *data; unsigned size; }; struct IFF_CHUNKED { unsigned chunk_count; IFF_CHUNK *chunks; }; static IFF_CHUNKED *dumbfile_read_okt(DUMBFILE *f) { IFF_CHUNKED *mod = (IFF_CHUNKED *)malloc(sizeof(*mod)); if (!mod) return NULL; mod->chunk_count = 0; mod->chunks = 0; for (;;) { long bytes_read; IFF_CHUNK *chunk = (IFF_CHUNK *)realloc( mod->chunks, (mod->chunk_count + 1) * sizeof(IFF_CHUNK)); if (!chunk) { if (mod->chunks) free(mod->chunks); free(mod); return NULL; } mod->chunks = chunk; chunk += mod->chunk_count; bytes_read = dumbfile_mgetl(f); if (bytes_read < 0) break; chunk->type = (unsigned int)bytes_read; chunk->size = (unsigned int)dumbfile_mgetl(f); if (dumbfile_error(f)) break; chunk->data = (unsigned char *)malloc(chunk->size); if (!chunk->data) { free(mod->chunks); free(mod); return NULL; } bytes_read = dumbfile_getnc((char *)chunk->data, chunk->size, f); if (bytes_read < chunk->size) { if (bytes_read <= 0) { free(chunk->data); break; } else { chunk->size = (unsigned int)bytes_read; mod->chunk_count++; break; } } mod->chunk_count++; } if (!mod->chunk_count) { if (mod->chunks) free(mod->chunks); free(mod); mod = NULL; } return mod; } void free_okt(IFF_CHUNKED *mod) { unsigned i; if (mod) { if (mod->chunks) { for (i = 0; i < mod->chunk_count; i++) { if (mod->chunks[i].data) free(mod->chunks[i].data); } free(mod->chunks); } free(mod); } } const IFF_CHUNK *get_chunk_by_type(IFF_CHUNKED *mod, unsigned type, unsigned offset) { unsigned i; if (mod) { if (mod->chunks) { for (i = 0; i < mod->chunk_count; i++) { if (mod->chunks[i].type == type) { if (!offset) return &mod->chunks[i]; else offset--; } } } } return NULL; } unsigned get_chunk_count(IFF_CHUNKED *mod, unsigned type) { unsigned i, count = 0; if (mod) { if (mod->chunks) { for (i = 0; i < mod->chunk_count; i++) { if (mod->chunks[i].type == type) count++; } } } return count; } static DUMB_IT_SIGDATA *it_okt_load_sigdata(DUMBFILE *f) { DUMB_IT_SIGDATA *sigdata; int n_channels; int i, j, k, l; IFF_CHUNKED *mod; const IFF_CHUNK *chunk; char signature[8]; if (dumbfile_getnc(signature, 8, f) < 8 || memcmp(signature, "OKTASONG", 8)) { return NULL; } mod = dumbfile_read_okt(f); if (!mod) return NULL; sigdata = (DUMB_IT_SIGDATA *)malloc(sizeof(*sigdata)); if (!sigdata) { free_okt(mod); return NULL; } sigdata->name[0] = 0; chunk = get_chunk_by_type(mod, DUMB_ID('S', 'P', 'E', 'E'), 0); if (!chunk || chunk->size < 2) { free(sigdata); free_okt(mod); return NULL; } sigdata->speed = (chunk->data[0] << 8) | chunk->data[1]; chunk = get_chunk_by_type(mod, DUMB_ID('S', 'A', 'M', 'P'), 0); if (!chunk || chunk->size < 32) { free(sigdata); free_okt(mod); return NULL; } sigdata->n_samples = chunk->size / 32; chunk = get_chunk_by_type(mod, DUMB_ID('C', 'M', 'O', 'D'), 0); if (!chunk || chunk->size < 8) { free(sigdata); free_okt(mod); return NULL; } n_channels = 0; for (i = 0; i < 4; i++) { j = (chunk->data[i * 2] << 8) | chunk->data[i * 2 + 1]; if (!j) n_channels++; else if (j == 1) n_channels += 2; } if (!n_channels) { free(sigdata); free_okt(mod); return NULL; } sigdata->n_pchannels = n_channels; sigdata->sample = (IT_SAMPLE *)malloc(sigdata->n_samples * sizeof(*sigdata->sample)); if (!sigdata->sample) { free(sigdata); free_okt(mod); return NULL; } sigdata->song_message = NULL; sigdata->order = NULL; sigdata->instrument = NULL; sigdata->pattern = NULL; sigdata->midi = NULL; sigdata->checkpoint = NULL; sigdata->n_instruments = 0; for (i = 0; i < sigdata->n_samples; i++) sigdata->sample[i].data = NULL; chunk = get_chunk_by_type(mod, DUMB_ID('S', 'A', 'M', 'P'), 0); for (i = 0; i < sigdata->n_samples; i++) { it_okt_read_sample_header(&sigdata->sample[i], chunk->data + 32 * i); } sigdata->restart_position = 0; chunk = get_chunk_by_type(mod, DUMB_ID('P', 'L', 'E', 'N'), 0); if (!chunk || chunk->size < 2) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } sigdata->n_orders = (chunk->data[0] << 8) | chunk->data[1]; // what if this is > 128? if (sigdata->n_orders <= 0 || sigdata->n_orders > 128) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } chunk = get_chunk_by_type(mod, DUMB_ID('P', 'A', 'T', 'T'), 0); if (!chunk || chunk->size < (unsigned)sigdata->n_orders) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } sigdata->order = (unsigned char *)malloc(sigdata->n_orders); if (!sigdata->order) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } memcpy(sigdata->order, chunk->data, sigdata->n_orders); /* Work out how many patterns there are. */ chunk = get_chunk_by_type(mod, DUMB_ID('S', 'L', 'E', 'N'), 0); if (!chunk || chunk->size < 2) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } sigdata->n_patterns = (chunk->data[0] << 8) | chunk->data[1]; j = get_chunk_count(mod, DUMB_ID('P', 'B', 'O', 'D')); if (sigdata->n_patterns > j) sigdata->n_patterns = j; if (!sigdata->n_patterns) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } sigdata->pattern = (IT_PATTERN *)malloc(sigdata->n_patterns * sizeof(*sigdata->pattern)); if (!sigdata->pattern) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } for (i = 0; i < sigdata->n_patterns; i++) sigdata->pattern[i].entry = NULL; /* Read in the patterns */ for (i = 0; i < sigdata->n_patterns; i++) { chunk = get_chunk_by_type(mod, DUMB_ID('P', 'B', 'O', 'D'), i); if (it_okt_read_pattern(&sigdata->pattern[i], chunk->data, chunk->size, n_channels) != 0) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } } /* And finally, the sample data */ k = get_chunk_count(mod, DUMB_ID('S', 'B', 'O', 'D')); for (i = 0, j = 0; i < sigdata->n_samples && j < k; i++) { if (sigdata->sample[i].flags & IT_SAMPLE_EXISTS) { chunk = get_chunk_by_type(mod, DUMB_ID('S', 'B', 'O', 'D'), j); if (it_okt_read_sample_data(&sigdata->sample[i], (const char *)chunk->data, chunk->size)) { _dumb_it_unload_sigdata(sigdata); free_okt(mod); return NULL; } j++; } } for (; i < sigdata->n_samples; i++) { sigdata->sample[i].flags = 0; } chunk = get_chunk_by_type(mod, DUMB_ID('C', 'M', 'O', 'D'), 0); for (i = 0, j = 0; i < n_channels && j < 4; j++) { k = (chunk->data[j * 2] << 8) | chunk->data[j * 2 + 1]; l = (j == 1 || j == 2) ? 48 : 16; if (k == 0) { sigdata->channel_pan[i++] = l; } else if (k == 1) { sigdata->channel_pan[i++] = l; sigdata->channel_pan[i++] = l; } } free_okt(mod); /* Now let's initialise the remaining variables, and we're done! */ sigdata->flags = IT_WAS_AN_OKT | IT_WAS_AN_XM | IT_WAS_A_MOD | IT_OLD_EFFECTS | IT_COMPATIBLE_GXX | IT_STEREO; sigdata->global_volume = 128; sigdata->mixing_volume = 48; /* We want 50 ticks per second; 50/6 row advances per second; * 50*10=500 row advances per minute; 500/4=125 beats per minute. */ sigdata->tempo = 125; sigdata->pan_separation = 128; memset(sigdata->channel_volume, 64, DUMB_IT_N_CHANNELS); memset(sigdata->channel_pan + n_channels, 32, DUMB_IT_N_CHANNELS - n_channels); if (_dumb_it_fix_invalid_orders(sigdata) < 0) { _dumb_it_unload_sigdata(sigdata); return NULL; } return sigdata; } DUH *dumb_read_okt_quick(DUMBFILE *f) { sigdata_t *sigdata; DUH_SIGTYPE_DESC *descptr = &_dumb_sigtype_it; sigdata = it_okt_load_sigdata(f); if (!sigdata) return NULL; { const char *tag[1][2]; tag[0][0] = "FORMAT"; tag[0][1] = "Oktalyzer"; return make_duh(-1, 1, (const char *const(*)[2])tag, 1, &descptr, &sigdata); } }