ref: 0183f1511656d53e02d2dd7b8acd001980517a14
dir: /test/ast/asttools.lsp/
; -*- scheme -*- ; utilities for AST processing (define (symconcat s1 s2) (symbol (string s1 s2))) (define (list-adjoin item lst) (if (member item lst) lst (cons item lst))) (define (index-of item lst start) (cond ((null? lst) #f) ((eq item (car lst)) start) (#t (index-of item (cdr lst) (+ start 1))))) (define (each f l) (if (null? l) l (begin (f (car l)) (each f (cdr l))))) (define (maptree-pre f tr) (let ((new-t (f tr))) (if (pair? new-t) (map (lambda (e) (maptree-pre f e)) new-t) new-t))) (define (maptree-post f tr) (if (not (pair? tr)) (f tr) (let ((new-t (map (lambda (e) (maptree-post f e)) tr))) (f new-t)))) (define (foldtree-pre f t zero) (if (not (pair? t)) (f t zero) (foldl t (lambda (e state) (foldtree-pre f e state)) (f t zero)))) (define (foldtree-post f t zero) (if (not (pair? t)) (f t zero) (f t (foldl t (lambda (e state) (foldtree-post f e state)) zero)))) ; general tree transformer ; folds in preorder (foldtree-pre), maps in postorder (maptree-post) ; therefore state changes occur immediately, just by looking at the current node, ; while transformation follows evaluation order. this seems to be the most natural ; approach. ; (mapper tree state) - should return transformed tree given current state ; (folder tree state) - should return new state (define (map&fold t zero mapper folder) (let ((head (and (pair? t) (car t)))) (cond ((eq? head 'quote) t) ((or (eq? head 'the) (eq? head 'meta)) (list head (cadr t) (map&fold (caddr t) zero mapper folder))) (else (let ((new-s (folder t zero))) (mapper (if (pair? t) ; head symbol is a tag; never transform it (cons (car t) (map (lambda (e) (map&fold e new-s mapper folder)) (cdr t))) t) new-s)))))) ; convert to proper list, i.e. remove "dots", and append (define (append.2 l tail) (cond ((null? l) tail) ((atom? l) (cons l tail)) (#t (cons (car l) (append.2 (cdr l) tail))))) ; transform code by calling (f expr env) on each subexpr, where ; env is a list of lexical variables in effect at that point. (define (lexical-walk f t) (map&fold t () f (lambda (tree state) (if (and (eq? (car t) 'lambda) (pair? (cdr t))) (append.2 (cadr t) state) state)))) ; collapse forms like (&& (&& (&& (&& a b) c) d) e) to (&& a b c d e) (define (flatten-left-op op e) (maptree-post (lambda (node) (if (and (pair? node) (eq (car node) op) (pair? (cdr node)) (pair? (cadr node)) (eq (caadr node) op)) (cons op (append (cdadr node) (cddr node))) node)) e)) ; convert all local variable references to (lexref rib slot name) ; where rib is the nesting level and slot is the stack slot# ; name is just there for reference ; this assumes lambda is the only remaining naming form (define (lookup-var v env lev) (if (null? env) v (let ((i (index-of v (car env) 0))) (if i (list 'lexref lev i v) (lookup-var v (cdr env) (+ lev 1)))))) (define (lvc- e env) (cond ((symbol? e) (lookup-var e env 0)) ((pair? e) (if (eq (car e) 'quote) e (let* ((newvs (and (eq (car e) 'lambda) (cadr e))) (newenv (if newvs (cons newvs env) env))) (if newvs (cons 'lambda (cons (cadr e) (map (lambda (se) (lvc- se newenv)) (cddr e)))) (map (lambda (se) (lvc- se env)) e))))) (#t e))) (define (lexical-var-conversion e) (lvc- e ())) ; convert let to lambda (define (let-expand e) (maptree-post (lambda (n) (if (and (pair? n) (eq (car n) 'let)) `((lambda ,(map car (cadr n)) ,@(cddr n)) ,@(map cadr (cadr n))) n)) e)) ; alpha renaming ; transl is an assoc list ((old-sym-name . new-sym-name) ...) (define (alpha-rename e transl) (map&fold e () ; mapper: replace symbol if unbound (lambda (t env) (if (symbol? t) (let ((found (assq t transl))) (if (and found (not (memq t env))) (cdr found) t)) t)) ; folder: add locals to environment if entering a new scope (lambda (t env) (if (and (pair? t) (or (eq? (car t) 'let) (eq? (car t) 'lambda))) (append (cadr t) env) env)))) ; flatten op with any associativity (define-macro (flatten-all-op op e) `(pattern-expand (pattern-lambda (,op (-- l ...) (-- inner (,op ...)) (-- r ...)) (cons ',op (append l (cdr inner) r))) ,e)) (define-macro (pattern-lambda pat body) (let* ((args (patargs pat)) (expander `(lambda ,args ,body))) `(lambda (expr) (let ((m (match ',pat expr))) (if m ; matches; perform expansion (apply ,expander (map (lambda (var) (cdr (or (assq var m) '(0 . #f)))) ',args)) #f)))))