shithub: femtolisp

ref: 0418c645cf31011412e2bfaaca497130b8d5a658
dir: /tiny/evalt/

View raw version
value_t eval_sexpr(value_t e, value_t *penv)
{
    value_t f, v, bind, headsym, asym, labl=0, *pv, *argsyms, *body, *lenv;
    value_t *rest;
    cons_t *c;
    symbol_t *sym;
    u_int32_t saveSP;
    int i, nargs, noeval=0;
    number_t s, n;

 eval_top:
    if (issymbol(e)) {
        sym = (symbol_t*)ptr(e);
        if (sym->constant != UNBOUND) return sym->constant;
        v = *penv;
        while (iscons(v)) {
            bind = car_(v);
            if (iscons(bind) && car_(bind) == e)
                return cdr_(bind);
            v = cdr_(v);
        }
        if ((v = sym->binding) == UNBOUND)
            lerror("eval: error: variable %s has no value\n", sym->name);
        return v;
    }
    if ((unsigned)(char*)&nargs < (unsigned)stack_bottom || SP>=(N_STACK-100))
        lerror("eval: error: stack overflow\n");
    saveSP = SP;
    PUSH(e);
    PUSH(*penv);
    f = eval(car_(e), penv);
    *penv = Stack[saveSP+1];
    if (isbuiltin(f)) {
        // handle builtin function
        if (!isspecial(f)) {
            // evaluate argument list, placing arguments on stack
            v = Stack[saveSP] = cdr_(Stack[saveSP]);
            while (iscons(v)) {
                v = eval(car_(v), penv);
                *penv = Stack[saveSP+1];
                PUSH(v);
                v = Stack[saveSP] = cdr_(Stack[saveSP]);
            }
        }
    apply_builtin:
        nargs = SP - saveSP - 2;
        switch (intval(f)) {
        // special forms
        case F_QUOTE:
            v = cdr_(Stack[saveSP]);
            if (!iscons(v))
                lerror("quote: error: expected argument\n");
            v = car_(v);
            break;
        case F_MACRO:
        case F_LAMBDA:
            v = Stack[saveSP];
            if (*penv != NIL) {
                // build a closure (lambda args body . env)
                v = cdr_(v);
                PUSH(car(v));
                argsyms = &Stack[SP-1];
                PUSH(car(cdr_(v)));
                body = &Stack[SP-1];
                v = cons_(intval(f)==F_LAMBDA ? &LAMBDA : &MACRO,
                          cons(argsyms, cons(body, penv)));
            }
            break;
        case F_LABEL:
            v = Stack[saveSP];
            if (*penv != NIL) {
                v = cdr_(v);
                PUSH(car(v));        // name
                pv = &Stack[SP-1];
                PUSH(car(cdr_(v)));  // function
                body = &Stack[SP-1];
                *body = eval(*body, penv);  // evaluate lambda
                v = cons_(&LABEL, cons(pv, cons(body, &NIL)));
            }
            break;
        case F_IF:
            v = car(cdr_(Stack[saveSP]));
            if (eval(v, penv) != NIL)
                v = car(cdr_(cdr_(Stack[saveSP])));
            else
                v = car(cdr(cdr_(cdr_(Stack[saveSP]))));
            tail_eval(v, Stack[saveSP+1]);
            break;
        case F_COND:
            Stack[saveSP] = cdr_(Stack[saveSP]);
            pv = &Stack[saveSP]; v = NIL;
            while (iscons(*pv)) {
                c = tocons(car_(*pv), "cond");
                v = eval(c->car, penv);
                *penv = Stack[saveSP+1];
                if (v != NIL) {
                    *pv = cdr_(car_(*pv));
                    // evaluate body forms
                    if (iscons(*pv)) {
                        while (iscons(cdr_(*pv))) {
                            v = eval(car_(*pv), penv);
                            *penv = Stack[saveSP+1];
                            *pv = cdr_(*pv);
                        }
                        tail_eval(car_(*pv), *penv);
                    }
                    break;
                }
                *pv = cdr_(*pv);
            }
            break;
        case F_AND:
            Stack[saveSP] = cdr_(Stack[saveSP]);
            pv = &Stack[saveSP]; v = T;
            if (iscons(*pv)) {
                while (iscons(cdr_(*pv))) {
                    if ((v=eval(car_(*pv), penv)) == NIL) {
                        SP = saveSP; return NIL;
                    }
                    *penv = Stack[saveSP+1];
                    *pv = cdr_(*pv);
                }
                tail_eval(car_(*pv), *penv);
            }
            break;
        case F_OR:
            Stack[saveSP] = cdr_(Stack[saveSP]);
            pv = &Stack[saveSP]; v = NIL;
            if (iscons(*pv)) {
                while (iscons(cdr_(*pv))) {
                    if ((v=eval(car_(*pv), penv)) != NIL) {
                        SP = saveSP; return v;
                    }
                    *penv = Stack[saveSP+1];
                    *pv = cdr_(*pv);
                }
                tail_eval(car_(*pv), *penv);
            }
            break;
        case F_WHILE:
            PUSH(car(cdr(cdr_(Stack[saveSP]))));
            body = &Stack[SP-1];
            Stack[saveSP] = car_(cdr_(Stack[saveSP]));
            value_t *cond = &Stack[saveSP];
            PUSH(NIL); pv = &Stack[SP-1];
            while (eval(*cond, penv) != NIL) {
                *penv = Stack[saveSP+1];
                *pv = eval(*body, penv);
                *penv = Stack[saveSP+1];
            }
            v = *pv;
            break;
        case F_PROGN:
            // return last arg
            Stack[saveSP] = cdr_(Stack[saveSP]);
            pv = &Stack[saveSP]; v = NIL;
            if (iscons(*pv)) {
                while (iscons(cdr_(*pv))) {
                    v = eval(car_(*pv), penv);
                    *penv = Stack[saveSP+1];
                    *pv = cdr_(*pv);
                }
                tail_eval(car_(*pv), *penv);
            }
            break;

        // ordinary functions
        case F_SET:
            argcount("set", nargs, 2);
            e = Stack[SP-2];
            v = *penv;
            while (iscons(v)) {
                bind = car_(v);
                if (iscons(bind) && car_(bind) == e) {
                    cdr_(bind) = (v=Stack[SP-1]);
                    SP=saveSP; return v;
                }
                v = cdr_(v);
            }
            tosymbol(e, "set")->binding = (v=Stack[SP-1]);
            break;
        case F_BOUNDP:
            argcount("boundp", nargs, 1);
            if (tosymbol(Stack[SP-1], "boundp")->binding == UNBOUND)
                v = NIL;
            else
                v = T;
            break;
        case F_EQ:
            argcount("eq", nargs, 2);
            v = ((Stack[SP-2] == Stack[SP-1]) ? T : NIL);
            break;
        case F_CONS:
            argcount("cons", nargs, 2);
            v = mk_cons();
            car_(v) = Stack[SP-2];
            cdr_(v) = Stack[SP-1];
            break;
        case F_CAR:
            argcount("car", nargs, 1);
            v = car(Stack[SP-1]);
            break;
        case F_CDR:
            argcount("cdr", nargs, 1);
            v = cdr(Stack[SP-1]);
            break;
        case F_RPLACA:
            argcount("rplaca", nargs, 2);
            car(v=Stack[SP-2]) = Stack[SP-1];
            break;
        case F_RPLACD:
            argcount("rplacd", nargs, 2);
            cdr(v=Stack[SP-2]) = Stack[SP-1];
            break;
        case F_ATOM:
            argcount("atom", nargs, 1);
            v = ((!iscons(Stack[SP-1])) ? T : NIL);
            break;
        case F_CONSP:
            argcount("consp", nargs, 1);
            v = (iscons(Stack[SP-1]) ? T : NIL);
            break;
        case F_SYMBOLP:
            argcount("symbolp", nargs, 1);
            v = ((issymbol(Stack[SP-1])) ? T : NIL);
            break;
        case F_NUMBERP:
            argcount("numberp", nargs, 1);
            v = ((isnumber(Stack[SP-1])) ? T : NIL);
            break;
        case F_ADD:
            s = 0;
            for (i=saveSP+2; i < (int)SP; i++) {
                n = tonumber(Stack[i], "+");
                s += n;
            }
            v = number(s);
            break;
        case F_SUB:
            if (nargs < 1)
                lerror("-: error: too few arguments\n");
            i = saveSP+2;
            s = (nargs==1) ? 0 : tonumber(Stack[i++], "-");
            for (; i < (int)SP; i++) {
                n = tonumber(Stack[i], "-");
                s -= n;
            }
            v = number(s);
            break;
        case F_MUL:
            s = 1;
            for (i=saveSP+2; i < (int)SP; i++) {
                n = tonumber(Stack[i], "*");
                s *= n;
            }
            v = number(s);
            break;
        case F_DIV:
            if (nargs < 1)
                lerror("/: error: too few arguments\n");
            i = saveSP+2;
            s = (nargs==1) ? 1 : tonumber(Stack[i++], "/");
            for (; i < (int)SP; i++) {
                n = tonumber(Stack[i], "/");
                if (n == 0)
                    lerror("/: error: division by zero\n");
                s /= n;
            }
            v = number(s);
            break;
        case F_LT:
            argcount("<", nargs, 2);
            if (tonumber(Stack[SP-2],"<") < tonumber(Stack[SP-1],"<"))
                v = T;
            else
                v = NIL;
            break;
        case F_NOT:
            argcount("not", nargs, 1);
            v = ((Stack[SP-1] == NIL) ? T : NIL);
            break;
        case F_EVAL:
            argcount("eval", nargs, 1);
            v = Stack[SP-1];
            tail_eval(v, NIL);
            break;
        case F_PRINT:
            for (i=saveSP+2; i < (int)SP; i++)
                print(stdout, v=Stack[i], 0);
            fprintf(stdout, "\n");
            break;
        case F_PRINC:
            for (i=saveSP+2; i < (int)SP; i++)
                print(stdout, v=Stack[i], 1);
            break;
        case F_READ:
            argcount("read", nargs, 0);
            v = read_sexpr(stdin);
            break;
        case F_LOAD:
            argcount("load", nargs, 1);
            v = load_file(tosymbol(Stack[SP-1], "load")->name);
            break;
        case F_EXIT:
            exit(0);
            break;
        case F_ERROR:
            for (i=saveSP+2; i < (int)SP; i++)
                print(stderr, Stack[i], 1);
            lerror("\n");
            break;
        case F_PROG1:
            // return first arg
            if (nargs < 1)
                lerror("prog1: error: too few arguments\n");
            v = Stack[saveSP+2];
            break;
        case F_APPLY:
            argcount("apply", nargs, 2);
            v = Stack[saveSP] = Stack[SP-1];  // second arg is new arglist
            f = Stack[SP-2];            // first arg is new function
            POPN(2);                    // pop apply's args
            if (isbuiltin(f)) {
                if (isspecial(f))
                    lerror("apply: error: cannot apply special operator "
                           "%s\n", builtin_names[intval(f)]);
                // unpack arglist onto the stack
                while (iscons(v)) {
                    PUSH(car_(v));
                    v = cdr_(v);
                }
                goto apply_builtin;
            }
            noeval = 1;
            goto apply_lambda;
        }
        SP = saveSP;
        return v;
    }
    else {
        v = Stack[saveSP] = cdr_(Stack[saveSP]);
    }
 apply_lambda:
    if (iscons(f)) {
        headsym = car_(f);
        if (headsym == LABEL) {
            // (label name (lambda ...)) behaves the same as the lambda
            // alone, except with name bound to the whole label expression
            labl = f;
            f = car(cdr(cdr_(labl)));
            headsym = car(f);
        }
        // apply lambda or macro expression
        PUSH(cdr(cdr(cdr_(f))));
        lenv = &Stack[SP-1];
        PUSH(car_(cdr_(f)));
        argsyms = &Stack[SP-1];
        PUSH(car_(cdr_(cdr_(f))));
        body = &Stack[SP-1];
        if (labl) {
            // add label binding to environment
            PUSH(labl);
            PUSH(car_(cdr_(labl)));
            *lenv = cons_(cons(&Stack[SP-1], &Stack[SP-2]), lenv);
            POPN(3);
            v = Stack[saveSP]; // refetch arglist
        }
        if (headsym == MACRO)
            noeval = 1;
        else if (headsym != LAMBDA)
            lerror("apply: error: head must be lambda, macro, or label\n");
        // build a calling environment for the lambda
        // the environment is the argument binds on top of the captured
        // environment
        while (iscons(v)) {
            // bind args
            if (!iscons(*argsyms)) {
                if (*argsyms == NIL)
                    lerror("apply: error: too many arguments\n");
                break;
            }
            asym = car_(*argsyms);
            if (!issymbol(asym))
                lerror("apply: error: formal argument not a symbol\n");
            v = car_(v);
            if (!noeval) {
                v = eval(v, penv);
                *penv = Stack[saveSP+1];
            }
            PUSH(v);
            *lenv = cons_(cons(&asym, &Stack[SP-1]), lenv);
            POPN(2);
            *argsyms = cdr_(*argsyms);
            v = Stack[saveSP] = cdr_(Stack[saveSP]);
        }
        if (*argsyms != NIL) {
            if (issymbol(*argsyms)) {
                if (noeval) {
                    *lenv = cons_(cons(argsyms, &Stack[saveSP]), lenv);
                }
                else {
                    PUSH(NIL);
                    PUSH(NIL);
                    rest = &Stack[SP-1];
                    // build list of rest arguments
                    // we have to build it forwards, which is tricky
                    while (iscons(v)) {
                        v = eval(car_(v), penv);
                        *penv = Stack[saveSP+1];
                        PUSH(v);
                        v = cons_(&Stack[SP-1], &NIL);
                        POP();
                        if (iscons(*rest))
                            cdr_(*rest) = v;
                        else
                            Stack[SP-2] = v;
                        *rest = v;
                        v = Stack[saveSP] = cdr_(Stack[saveSP]);
                    }
                    *lenv = cons_(cons(argsyms, &Stack[SP-2]), lenv);
                }
            }
            else if (iscons(*argsyms)) {
                lerror("apply: error: too few arguments\n");
            }
        }
        noeval = 0;
        // macro: evaluate expansion in the calling environment
        if (headsym == MACRO) {
            SP = saveSP;
            PUSH(*lenv);
            lenv = &Stack[SP-1];
            v = eval(*body, lenv);
            tail_eval(v, *penv);
        }
        else {
            tail_eval(*body, *lenv);
        }
        // not reached
    }
    type_error("apply", "function", f);
    return NIL;
}