ref: d14238b24fca16dd7718501b4a723965027fd6d3
dir: /test/equal.scm/
; Terminating equal predicate ; by Jeff Bezanson ; ; This version only considers pairs and simple atoms. ; equal?, with bounded recursion. returns 0 if we suspect ; nontermination, otherwise #t or #f for the correct answer. (define (bounded-equal a b N) (cond ((<= N 0) 0) ((and (pair? a) (pair? b)) (let ((as (bounded-equal (car a) (car b) (- N 1)))) (if (number? as) 0 (and as (bounded-equal (cdr a) (cdr b) (- N 1)))))) (else (eq? a b)))) ; union-find algorithm ; find equivalence class of a cons cell, or #f if not yet known ; the root of a class is a cons that is its own class (define (class table key) (let ((c (hashtable-ref table key #f))) (if (or (not c) (eq? c key)) c (class table c)))) ; move a and b to the same equivalence class, given c and cb ; as the current values of (class table a) and (class table b) ; Note: this is not quite optimal. We blindly pick 'a' as the ; root of the new class, but we should pick whichever class is ; larger. (define (union! table a b c cb) (let ((ca (if c c a))) (if cb (hashtable-set! table cb ca)) (hashtable-set! table a ca) (hashtable-set! table b ca))) ; cyclic equal. first, attempt to compare a and b as best ; we can without recurring. if we can't prove them different, ; set them equal and move on. (define (cyc-equal a b table) (cond ((eq? a b) #t) ((not (and (pair? a) (pair? b))) (eq? a b)) (else (let ((aa (car a)) (da (cdr a)) (ab (car b)) (db (cdr b))) (cond ((or (not (eq? (atom? aa) (atom? ab))) (not (eq? (atom? da) (atom? db)))) #f) ((and (atom? aa) (not (eq? aa ab))) #f) ((and (atom? da) (not (eq? da db))) #f) (else (let ((ca (class table a)) (cb (class table b))) (if (and ca cb (eq? ca cb)) #t (begin (union! table a b ca cb) (and (cyc-equal aa ab table) (cyc-equal da db table))))))))))) (define (equal a b) (let ((guess (bounded-equal a b 2048))) (if (boolean? guess) guess (cyc-equal a b (make-eq-hashtable)))))