ref: bea180125fdfc4d44d516ac110a8f83c50aad695
dir: /src/wavesynth/cst_sigpr.c/
/*************************************************************************/ /* */ /* Language Technologies Institute */ /* Carnegie Mellon University */ /* Copyright (c) 2001 */ /* All Rights Reserved. */ /* */ /* Permission is hereby granted, free of charge, to use and distribute */ /* this software and its documentation without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of this work, and to */ /* permit persons to whom this work is furnished to do so, subject to */ /* the following conditions: */ /* 1. The code must retain the above copyright notice, this list of */ /* conditions and the following disclaimer. */ /* 2. Any modifications must be clearly marked as such. */ /* 3. Original authors' names are not deleted. */ /* 4. The authors' names are not used to endorse or promote products */ /* derived from this software without specific prior written */ /* permission. */ /* */ /* CARNEGIE MELLON UNIVERSITY AND THE CONTRIBUTORS TO THIS WORK */ /* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */ /* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */ /* SHALL CARNEGIE MELLON UNIVERSITY NOR THE CONTRIBUTORS BE LIABLE */ /* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */ /* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */ /* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */ /* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */ /* THIS SOFTWARE. */ /* */ /*************************************************************************/ /* Author: Alan W Black (awb@cs.cmu.edu) */ /* Date: January 2001 */ /*************************************************************************/ /* */ /* Signal processing functions */ /* */ /*************************************************************************/ #include "cst_math.h" #include "cst_hrg.h" #include "cst_wave.h" #include "cst_sigpr.h" #include "cst_sts.h" cst_wave *lpc_resynth(cst_lpcres *lpcres) { cst_wave *w; int i,j,r,o,k; int ci,cr; float *outbuf, *lpccoefs; int pm_size_samps; /* Get a new wave to build the signal into */ w = new_wave(); cst_wave_resize(w,lpcres->num_samples,1); w->sample_rate = lpcres->sample_rate; /* outbuf is a circular buffer with past relevant samples in it */ outbuf = cst_alloc(float,1+lpcres->num_channels); /* unpacked lpc coefficients */ lpccoefs = cst_alloc(float,lpcres->num_channels); for (r=0,o=lpcres->num_channels,i=0; i < lpcres->num_frames; i++) { pm_size_samps = lpcres->sizes[i]; /* Unpack the LPC coefficients */ for (k=0; k<lpcres->num_channels; k++) { lpccoefs[k] = (float)((((double)lpcres->frames[i][k])/65535.0)* lpcres->lpc_range) + lpcres->lpc_min; } /* Note we don't zero the lead in from the previous part */ /* seems like you should but it makes it worse if you do */ /* memset(outbuf,0,sizeof(float)*(1+lpcres->num_channels)); */ /* resynthesis the signal */ for (j=0; j < pm_size_samps; j++,r++) { outbuf[o] = (float)cst_ulaw_to_short(lpcres->residual[r]); cr = (o == 0 ? lpcres->num_channels : o-1); for (ci=0; ci < lpcres->num_channels; ci++) { outbuf[o] += lpccoefs[ci] * outbuf[cr]; cr = (cr == 0 ? lpcres->num_channels : cr-1); } w->samples[r] = (short)(outbuf[o]); o = (o == lpcres->num_channels ? 0 : o+1); } } cst_free(outbuf); cst_free(lpccoefs); return w; } cst_wave *lpc_resynth_windows(cst_lpcres *lpcres) { cst_wave *w; int i,j,r,o,k; int ci,cr; float *outbuf, *lpccoefs; int pm_size_samps; /* Get a new wave to build the signal into */ w = new_wave(); cst_wave_resize(w,lpcres->num_samples,1); w->sample_rate = lpcres->sample_rate; /* outbuf is a circular buffer with past relevant samples in it */ outbuf = cst_alloc(float,1+lpcres->num_channels); /* unpacked lpc coefficients */ lpccoefs = cst_alloc(float,lpcres->num_channels); for (r=0,o=lpcres->num_channels,i=0; i < lpcres->num_frames; i++) { pm_size_samps = lpcres->sizes[i]; /* Unpack the LPC coefficients */ for (k=0; k<lpcres->num_channels; k++) { lpccoefs[k] = ((float)(((double)lpcres->frames[i][k])/65535.0)* lpcres->lpc_range) + lpcres->lpc_min; } memset(outbuf,0,sizeof(float)*(1+lpcres->num_channels)); /* resynthesis the signal */ for (j=0; j < pm_size_samps; j++,r++) { outbuf[o] = (float)cst_ulaw_to_short(lpcres->residual[r]); cr = (o == 0 ? lpcres->num_channels : o-1); for (ci=0; ci < lpcres->num_channels; ci++) { outbuf[o] += lpccoefs[ci] * outbuf[cr]; cr = (cr == 0 ? lpcres->num_channels : cr-1); } w->samples[r] = (short)(outbuf[o]); o = (o == lpcres->num_channels ? 0 : o+1); } } cst_free(outbuf); cst_free(lpccoefs); return w; } const static short ulaw_to_short_table[] = { -32124, -31100, -30076, -29052, -28028, -27004, -25980, -24956, -23932, -22908, -21884, -20860, -19836, -18812, -17788, -16764, -15996, -15484, -14972, -14460, -13948, -13436, -12924, -12412, -11900, -11388, -10876, -10364, -9852, -9340, -8828, -8316, -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140, -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092, -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004, -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980, -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436, -1372, -1308, -1244, -1180, -1116, -1052, -988, -924, -876, -844, -812, -780, -748, -716, -684, -652, -620, -588, -556, -524, -492, -460, -428, -396, -372, -356, -340, -324, -308, -292, -276, -260, -244, -228, -212, -196, -180, -164, -148, -132, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8, 0, 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956, 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764, 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412, 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316, 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140, 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092, 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004, 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980, 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436, 1372, 1308, 1244, 1180, 1116, 1052, 988, 924, 876, 844, 812, 780, 748, 716, 684, 652, 620, 588, 556, 524, 492, 460, 428, 396, 372, 356, 340, 324, 308, 292, 276, 260, 244, 228, 212, 196, 180, 164, 148, 132, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 }; cst_wave *lpc_resynth_fixedpoint(cst_lpcres *lpcres) { /* The fixed point version, without floats */ cst_wave *w; int i,j,r,o,k; int stream_mark; int ci,cr; int *outbuf, *lpccoefs; int pm_size_samps, ilpc_min, ilpc_range; int rc = CST_AUDIO_STREAM_CONT; /* Get a new wave to build the signal into */ w = new_wave(); cst_wave_resize(w,lpcres->num_samples,1); w->sample_rate = lpcres->sample_rate; /* outbuf is a circular buffer with past relevant samples in it */ outbuf = cst_alloc(int,1+lpcres->num_channels); /* unpacked lpc coefficients */ lpccoefs = cst_alloc(int,lpcres->num_channels); ilpc_min = (int)(lpcres->lpc_min*32768.0); /* assume range is never > abs(16) */ ilpc_range = (int)(lpcres->lpc_range*2048.0); stream_mark = 0; for (r=0,o=lpcres->num_channels,i=0; (rc == CST_AUDIO_STREAM_CONT) && (i < lpcres->num_frames); i++) { pm_size_samps = lpcres->sizes[i]; if (lpcres->delayed_decoding) { /* do decoding for this frame */ add_residual_g721vuv(lpcres->sizes[i], &lpcres->residual[r], lpcres->sizes[i], lpcres->packed_residuals[i]); } /* Unpack the LPC coefficients */ for (k=0; k<lpcres->num_channels; k++) lpccoefs[k]=((lpcres->frames[i][k]/2*ilpc_range)/2048+ilpc_min)/2; /* resynthesis the signal */ for (j=0; j < pm_size_samps; j++,r++) { outbuf[o] = (int)ulaw_to_short_table[lpcres->residual[r]]; outbuf[o] *= 16384; cr = (o == 0 ? lpcres->num_channels : o-1); for (ci=0; ci < lpcres->num_channels; ci++) { outbuf[o] += lpccoefs[ci]*outbuf[cr]; cr = (cr == 0 ? lpcres->num_channels : cr-1); } outbuf[o] /= 16384; w->samples[r] = (short)outbuf[o]; o = (o == lpcres->num_channels ? 0 : o+1); } if (lpcres->asi && (r-stream_mark > lpcres->asi->min_buffsize)) { rc = (*lpcres->asi->asc)(w,stream_mark,r-stream_mark,0, lpcres->asi); stream_mark = r; } } if ((lpcres->asi) && (rc == CST_AUDIO_STREAM_CONT)) (*lpcres->asi->asc)(w,stream_mark,r-stream_mark,1,lpcres->asi); cst_free(outbuf); cst_free(lpccoefs); w->num_samples = r; /* just to be safe */ if (rc == CST_AUDIO_STREAM_STOP) { delete_wave(w); return NULL; } else return w; } cst_wave *lpc_resynth_sfp(cst_lpcres *lpcres) { /* The fixed point spike excited, without floats */ cst_wave *w; int i,j,r,o,k; int ci,cr; int *outbuf, *lpccoefs; int pm_size_samps, ilpc_min, ilpc_range; /* Get a new wave to build the signal into */ w = new_wave(); cst_wave_resize(w,lpcres->num_samples,1); w->sample_rate = lpcres->sample_rate; /* outbuf is a circular buffer with past relevant samples in it */ outbuf = cst_alloc(int,1+lpcres->num_channels); /* unpacked lpc coefficients */ lpccoefs = cst_alloc(int,lpcres->num_channels); ilpc_min = (int)(lpcres->lpc_min*32768.0); /* assume range is never > abs(16) */ ilpc_range = (int)(lpcres->lpc_range*2048.0); for (r=0,o=lpcres->num_channels,i=0; i < lpcres->num_frames; i++) { pm_size_samps = lpcres->sizes[i]; /* Unpack the LPC coefficients */ for (k=0; k<lpcres->num_channels; k++) lpccoefs[k]=((lpcres->frames[i][k]/2*ilpc_range)/2048+ilpc_min)/2; /* resynthesis the signal */ for (j=0; j < pm_size_samps; j++,r++) { outbuf[o] = (int)cst_ulaw_to_short(lpcres->residual[r]); cr = (o == 0 ? lpcres->num_channels : o-1); for (ci=0; ci < lpcres->num_channels; ci++) { outbuf[o] += (lpccoefs[ci]*outbuf[cr])/16384; cr = (cr == 0 ? lpcres->num_channels : cr-1); } w->samples[r] = (short)outbuf[o]; o = (o == lpcres->num_channels ? 0 : o+1); } } cst_free(outbuf); cst_free(lpccoefs); return w; }