ref: dc113711f18d3e35f22fbb34a747604b41f91ded
dir: /src/h264bsd_decoder.c/
/* * Copyright (C) 2009 The Android Open Source Project * Modified for use by h264bsd standalone library * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*------------------------------------------------------------------------------ Table of contents 1. Include headers 2. External compiler flags 3. Module defines 4. Local function prototypes 5. Functions h264bsdInit h264bsdDecode h264bsdShutdown h264bsdCurrentImage h264bsdNextOutputPicture h264bsdPicWidth h264bsdPicHeight h264bsdFlushBuffer h264bsdCheckValidParamSets h264bsdVideoRange h264bsdMatrixCoefficients h264bsdCroppingParams ------------------------------------------------------------------------------*/ /*------------------------------------------------------------------------------ 1. Include headers ------------------------------------------------------------------------------*/ #include "h264bsd_decoder.h" #include "h264bsd_nal_unit.h" #include "h264bsd_byte_stream.h" #include "h264bsd_seq_param_set.h" #include "h264bsd_pic_param_set.h" #include "h264bsd_slice_header.h" #include "h264bsd_slice_data.h" #include "h264bsd_neighbour.h" #include "h264bsd_util.h" #include "h264bsd_dpb.h" #include "h264bsd_deblocking.h" #include "h264bsd_conceal.h" #include "h264bsd_storage.h" /*------------------------------------------------------------------------------ 2. External compiler flags -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- 3. Module defines ------------------------------------------------------------------------------*/ /*------------------------------------------------------------------------------ 4. Local function prototypes ------------------------------------------------------------------------------*/ /*------------------------------------------------------------------------------ Function name: h264bsdInit Functional description: Initialize the decoder. Inputs: noOutputReordering flag to indicate the decoder that it does not have to perform reordering of display images. Outputs: pStorage pointer to initialized storage structure Returns: none ------------------------------------------------------------------------------*/ u32 h264bsdInit(storage_t *pStorage, u32 noOutputReordering) { /* Variables */ u32 size; /* Code */ ASSERT(pStorage); h264bsdInitStorage(pStorage); /* allocate mbLayer to be next multiple of 64 to enable use of * specific NEON optimized "memset" for clearing the structure */ size = (sizeof(macroblockLayer_t) + 63) & ~0x3F; pStorage->mbLayer = (macroblockLayer_t*)malloc(size); if (!pStorage->mbLayer) return HANTRO_NOK; if (noOutputReordering) pStorage->noReordering = HANTRO_TRUE; return HANTRO_OK; } /*------------------------------------------------------------------------------ Function: h264bsdDecode Functional description: Decode a NAL unit. This function calls other modules to perform tasks like * extract and decode NAL unit from the byte stream * decode parameter sets * decode slice header and slice data * conceal errors in the picture * perform deblocking filtering This function contains top level control logic of the decoder. Inputs: pStorage pointer to storage data structure byteStrm pointer to stream buffer given by application len length of the buffer in bytes picId identifier for a picture, assigned by the application Outputs: readBytes number of bytes read from the stream is stored here Returns: H264BSD_RDY decoding finished, nothing special H264BSD_PIC_RDY decoding of a picture finished H264BSD_HDRS_RDY param sets activated, information like picture dimensions etc can be read H264BSD_ERROR error in decoding H264BSD_PARAM_SET_ERROR serius error in decoding, failed to activate param sets ------------------------------------------------------------------------------*/ u32 h264bsdDecode(storage_t *pStorage, u8 *byteStrm, u32 len, u32 picId, u32 *readBytes) { /* Variables */ u32 tmp, ppsId, spsId; i32 picOrderCnt; nalUnit_t nalUnit; seqParamSet_t seqParamSet; picParamSet_t picParamSet; strmData_t strm; u32 accessUnitBoundaryFlag = HANTRO_FALSE; u32 picReady = HANTRO_FALSE; /* Code */ ASSERT(pStorage); ASSERT(byteStrm); ASSERT(len); ASSERT(readBytes); /* if previous buffer was not finished and same pointer given -> skip NAL * unit extraction */ if (pStorage->prevBufNotFinished && byteStrm == pStorage->prevBufPointer) { strm = pStorage->strm[0]; strm.pStrmCurrPos = strm.pStrmBuffStart; strm.strmBuffReadBits = strm.bitPosInWord = 0; *readBytes = pStorage->prevBytesConsumed; } else { tmp = h264bsdExtractNalUnit(byteStrm, len, &strm, readBytes); if (tmp != HANTRO_OK) { EPRINT("BYTE_STREAM"); return(H264BSD_ERROR); } /* store stream */ pStorage->strm[0] = strm; pStorage->prevBytesConsumed = *readBytes; pStorage->prevBufPointer = byteStrm; } pStorage->prevBufNotFinished = HANTRO_FALSE; tmp = h264bsdDecodeNalUnit(&strm, &nalUnit); if (tmp != HANTRO_OK) { EPRINT("NAL_UNIT"); return(H264BSD_ERROR); } /* Discard unspecified, reserved, SPS extension and auxiliary picture slices */ if(nalUnit.nalUnitType == 0 || nalUnit.nalUnitType >= 13) { DEBUG(("DISCARDED NAL (UNSPECIFIED, REGISTERED, SPS ext or AUX slice)\n")); return(H264BSD_RDY); } tmp = h264bsdCheckAccessUnitBoundary( &strm, &nalUnit, pStorage, &accessUnitBoundaryFlag); if (tmp != HANTRO_OK) { EPRINT("ACCESS UNIT BOUNDARY CHECK"); if (tmp == PARAM_SET_ERROR) return(H264BSD_PARAM_SET_ERROR); else return(H264BSD_ERROR); } if ( accessUnitBoundaryFlag ) { DEBUG(("Access unit boundary\n")); /* conceal if picture started and param sets activated */ if (pStorage->picStarted && pStorage->activeSps != NULL) { DEBUG(("CONCEALING...")); /* return error if second phase of * initialization is not completed */ if (pStorage->pendingActivation) { EPRINT("Pending activation not completed"); return (H264BSD_ERROR); } if (!pStorage->validSliceInAccessUnit) { pStorage->currImage->data = h264bsdAllocateDpbImage(pStorage->dpb); h264bsdInitRefPicList(pStorage->dpb); tmp = h264bsdConceal(pStorage, pStorage->currImage, P_SLICE); } else tmp = h264bsdConceal(pStorage, pStorage->currImage, pStorage->sliceHeader->sliceType); picReady = HANTRO_TRUE; /* current NAL unit should be decoded on next activation -> set * readBytes to 0 */ *readBytes = 0; pStorage->prevBufNotFinished = HANTRO_TRUE; DEBUG(("...DONE\n")); } else { pStorage->validSliceInAccessUnit = HANTRO_FALSE; } pStorage->skipRedundantSlices = HANTRO_FALSE; } if (!picReady) { switch (nalUnit.nalUnitType) { case NAL_SEQ_PARAM_SET: DEBUG(("SEQ PARAM SET\n")); tmp = h264bsdDecodeSeqParamSet(&strm, &seqParamSet); if (tmp != HANTRO_OK) { EPRINT("SEQ_PARAM_SET"); FREE(seqParamSet.offsetForRefFrame); FREE(seqParamSet.vuiParameters); return(H264BSD_ERROR); } tmp = h264bsdStoreSeqParamSet(pStorage, &seqParamSet); break; case NAL_PIC_PARAM_SET: DEBUG(("PIC PARAM SET\n")); tmp = h264bsdDecodePicParamSet(&strm, &picParamSet); if (tmp != HANTRO_OK) { EPRINT("PIC_PARAM_SET"); FREE(picParamSet.runLength); FREE(picParamSet.topLeft); FREE(picParamSet.bottomRight); FREE(picParamSet.sliceGroupId); return(H264BSD_ERROR); } tmp = h264bsdStorePicParamSet(pStorage, &picParamSet); break; case NAL_CODED_SLICE_IDR: DEBUG(("IDR ")); /* fall through */ case NAL_CODED_SLICE: DEBUG(("SLICE HEADER\n")); /* picture successfully finished and still decoding same old * access unit -> no need to decode redundant slices */ if (pStorage->skipRedundantSlices) return(H264BSD_RDY); pStorage->picStarted = HANTRO_TRUE; if (h264bsdIsStartOfPicture(pStorage)) { pStorage->numConcealedMbs = 0; pStorage->currentPicId = picId; tmp = h264bsdCheckPpsId(&strm, &ppsId); ASSERT(tmp == HANTRO_OK); /* store old activeSpsId and return headers ready * indication if activeSps changes */ spsId = pStorage->activeSpsId; tmp = h264bsdActivateParamSets(pStorage, ppsId, IS_IDR_NAL_UNIT(&nalUnit) ? HANTRO_TRUE : HANTRO_FALSE); if (tmp != HANTRO_OK) { EPRINT("Param set activation"); pStorage->activePpsId = MAX_NUM_PIC_PARAM_SETS; pStorage->activePps = NULL; pStorage->activeSpsId = MAX_NUM_SEQ_PARAM_SETS; pStorage->activeSps = NULL; pStorage->pendingActivation = HANTRO_FALSE; if(tmp == MEMORY_ALLOCATION_ERROR) { return H264BSD_MEMALLOC_ERROR; } else return(H264BSD_PARAM_SET_ERROR); } if (spsId != pStorage->activeSpsId) { seqParamSet_t *oldSPS = NULL; seqParamSet_t *newSPS = pStorage->activeSps; u32 noOutputOfPriorPicsFlag = 1; if(pStorage->oldSpsId < MAX_NUM_SEQ_PARAM_SETS) { oldSPS = pStorage->sps[pStorage->oldSpsId]; } *readBytes = 0; pStorage->prevBufNotFinished = HANTRO_TRUE; if(nalUnit.nalUnitType == NAL_CODED_SLICE_IDR) { tmp = h264bsdCheckPriorPicsFlag(&noOutputOfPriorPicsFlag, &strm, newSPS, pStorage->activePps, nalUnit.nalUnitType); } else { tmp = HANTRO_NOK; } if((tmp != HANTRO_OK) || (noOutputOfPriorPicsFlag != 0) || (pStorage->dpb->noReordering) || (oldSPS == NULL) || (oldSPS->picWidthInMbs != newSPS->picWidthInMbs) || (oldSPS->picHeightInMbs != newSPS->picHeightInMbs) || (oldSPS->maxDpbSize != newSPS->maxDpbSize)) { pStorage->dpb->flushed = 0; } else { h264bsdFlushDpb(pStorage->dpb); } pStorage->oldSpsId = pStorage->activeSpsId; return(H264BSD_HDRS_RDY); } } /* return error if second phase of * initialization is not completed */ if (pStorage->pendingActivation) { EPRINT("Pending activation not completed"); return (H264BSD_ERROR); } tmp = h264bsdDecodeSliceHeader(&strm, pStorage->sliceHeader + 1, pStorage->activeSps, pStorage->activePps, &nalUnit); if (tmp != HANTRO_OK) { EPRINT("SLICE_HEADER"); return(H264BSD_ERROR); } if (h264bsdIsStartOfPicture(pStorage)) { if (!IS_IDR_NAL_UNIT(&nalUnit)) { tmp = h264bsdCheckGapsInFrameNum(pStorage->dpb, pStorage->sliceHeader[1].frameNum, nalUnit.nalRefIdc != 0 ? HANTRO_TRUE : HANTRO_FALSE, pStorage->activeSps-> gapsInFrameNumValueAllowedFlag); if (tmp != HANTRO_OK) { EPRINT("Gaps in frame num"); return(H264BSD_ERROR); } } pStorage->currImage->data = h264bsdAllocateDpbImage(pStorage->dpb); } /* store slice header to storage if successfully decoded */ pStorage->sliceHeader[0] = pStorage->sliceHeader[1]; pStorage->validSliceInAccessUnit = HANTRO_TRUE; pStorage->prevNalUnit[0] = nalUnit; h264bsdComputeSliceGroupMap(pStorage, pStorage->sliceHeader->sliceGroupChangeCycle); h264bsdInitRefPicList(pStorage->dpb); tmp = h264bsdReorderRefPicList(pStorage->dpb, &pStorage->sliceHeader->refPicListReordering, pStorage->sliceHeader->frameNum, pStorage->sliceHeader->numRefIdxL0Active); if (tmp != HANTRO_OK) { EPRINT("Reordering"); return(H264BSD_ERROR); } DEBUG(("SLICE DATA, FIRST %d\n", pStorage->sliceHeader->firstMbInSlice)); tmp = h264bsdDecodeSliceData(&strm, pStorage, pStorage->currImage, pStorage->sliceHeader); if (tmp != HANTRO_OK) { EPRINT("SLICE_DATA"); h264bsdMarkSliceCorrupted(pStorage, pStorage->sliceHeader->firstMbInSlice); return(H264BSD_ERROR); } if (h264bsdIsEndOfPicture(pStorage)) { picReady = HANTRO_TRUE; pStorage->skipRedundantSlices = HANTRO_TRUE; } break; case NAL_SEI: DEBUG(("SEI MESSAGE, NOT DECODED")); break; default: DEBUG(("NOT IMPLEMENTED YET %d\n",nalUnit.nalUnitType)); } } if (picReady) { h264bsdFilterPicture(pStorage->currImage, pStorage->mb); h264bsdResetStorage(pStorage); picOrderCnt = h264bsdDecodePicOrderCnt(pStorage->poc, pStorage->activeSps, pStorage->sliceHeader, pStorage->prevNalUnit); if (pStorage->validSliceInAccessUnit) { if (pStorage->prevNalUnit->nalRefIdc) { tmp = h264bsdMarkDecRefPic(pStorage->dpb, &pStorage->sliceHeader->decRefPicMarking, pStorage->currImage, pStorage->sliceHeader->frameNum, picOrderCnt, IS_IDR_NAL_UNIT(pStorage->prevNalUnit) ? HANTRO_TRUE : HANTRO_FALSE, pStorage->currentPicId, pStorage->numConcealedMbs); } /* non-reference picture, just store for possible display * reordering */ else { tmp = h264bsdMarkDecRefPic(pStorage->dpb, NULL, pStorage->currImage, pStorage->sliceHeader->frameNum, picOrderCnt, IS_IDR_NAL_UNIT(pStorage->prevNalUnit) ? HANTRO_TRUE : HANTRO_FALSE, pStorage->currentPicId, pStorage->numConcealedMbs); } } pStorage->picStarted = HANTRO_FALSE; pStorage->validSliceInAccessUnit = HANTRO_FALSE; return(H264BSD_PIC_RDY); } else return(H264BSD_RDY); } /*------------------------------------------------------------------------------ Function: h264bsdShutdown Functional description: Shutdown a decoder instance. Function frees all the memories allocated for the decoder instance. Inputs: pStorage pointer to storage data structure Returns: none ------------------------------------------------------------------------------*/ void h264bsdShutdown(storage_t *pStorage) { /* Variables */ u32 i; /* Code */ ASSERT(pStorage); for (i = 0; i < MAX_NUM_SEQ_PARAM_SETS; i++) { if (pStorage->sps[i]) { FREE(pStorage->sps[i]->offsetForRefFrame); FREE(pStorage->sps[i]->vuiParameters); FREE(pStorage->sps[i]); } } for (i = 0; i < MAX_NUM_PIC_PARAM_SETS; i++) { if (pStorage->pps[i]) { FREE(pStorage->pps[i]->runLength); FREE(pStorage->pps[i]->topLeft); FREE(pStorage->pps[i]->bottomRight); FREE(pStorage->pps[i]->sliceGroupId); FREE(pStorage->pps[i]); } } FREE(pStorage->mbLayer); FREE(pStorage->mb); FREE(pStorage->sliceGroupMap); h264bsdFreeDpb(pStorage->dpb); } /*------------------------------------------------------------------------------ Function: h264bsdNextOutputPicture Functional description: Get next output picture in display order. Inputs: pStorage pointer to storage data structure Outputs: picId identifier of the picture will be stored here isIdrPic IDR flag of the picture will be stored here numErrMbs number of concealed macroblocks in the picture will be stored here Returns: pointer to the picture data NULL if no pictures available for display ------------------------------------------------------------------------------*/ u8* h264bsdNextOutputPicture(storage_t *pStorage, u32 *picId, u32 *isIdrPic, u32 *numErrMbs) { /* Variables */ dpbOutPicture_t *pOut; /* Code */ ASSERT(pStorage); pOut = h264bsdDpbOutputPicture(pStorage->dpb); if (pOut != NULL) { *picId = pOut->picId; *isIdrPic = pOut->isIdr; *numErrMbs = pOut->numErrMbs; return (pOut->data); } else return(NULL); } /*------------------------------------------------------------------------------ Function: h264bsdNextOutputPictureRGBA Functional description: Get next output picture in display order, converted to RGBA. RGBA is the color format most commonly used by OpenGL. Inputs: pStorage pointer to storage data structure Outputs: picId identifier of the picture will be stored here isIdrPic IDR flag of the picture will be stored here numErrMbs number of concealed macroblocks in the picture will be stored here Returns: pointer to the picture data NULL if no pictures available for display ------------------------------------------------------------------------------*/ u32* h264bsdNextOutputPictureRGBA(storage_t *pStorage, u32 *picId, u32 *isIdrPic, u32 *numErrMbs) { u32 width = h264bsdPicWidth(pStorage) * 16; u32 height = h264bsdPicHeight(pStorage) * 16; u8* data = h264bsdNextOutputPicture(pStorage, picId, isIdrPic, numErrMbs); size_t rgbSize = sizeof(u32) * width * height; if(data == NULL) return NULL; if(pStorage->rgbConversionBufferSize < rgbSize) { if(pStorage->rgbConversionBuffer != NULL) free(pStorage->rgbConversionBuffer); pStorage->rgbConversionBufferSize = rgbSize; pStorage->rgbConversionBuffer = (u32*)malloc(rgbSize); } h264bsdConvertToRGBA(width, height, data, pStorage->rgbConversionBuffer); return pStorage->rgbConversionBuffer; } /*------------------------------------------------------------------------------ Function: h264bsdNextOutputPictureRGBA Functional description: Get next output picture in display order, converted to BGRA. BGRA is the color format most commonly used by Windows. Inputs: pStorage pointer to storage data structure Outputs: picId identifier of the picture will be stored here isIdrPic IDR flag of the picture will be stored here numErrMbs number of concealed macroblocks in the picture will be stored here Returns: pointer to the picture data NULL if no pictures available for display ------------------------------------------------------------------------------*/ u32* h264bsdNextOutputPictureBGRA(storage_t *pStorage, u32 *picId, u32 *isIdrPic, u32 *numErrMbs) { u32 width = h264bsdPicWidth(pStorage) * 16; u32 height = h264bsdPicHeight(pStorage) * 16; u8* data = h264bsdNextOutputPicture(pStorage, picId, isIdrPic, numErrMbs); size_t rgbSize = sizeof(u32) * width * height; if(data == NULL) return NULL; if(pStorage->rgbConversionBufferSize < rgbSize) { if(pStorage->rgbConversionBuffer != NULL) free(pStorage->rgbConversionBuffer); pStorage->rgbConversionBufferSize = rgbSize; pStorage->rgbConversionBuffer = (u32*)malloc(rgbSize); } h264bsdConvertToBGRA(width, height, data, pStorage->rgbConversionBuffer); return pStorage->rgbConversionBuffer; } /*------------------------------------------------------------------------------ Function: h264bsdNextOutputPictureYCbCrA Functional description: Get next output picture in display order, converted to YCbCrA. YCbCrA is a 4:4:4 format that uses u32 pixels where the MSB is alpha. Inputs: pStorage pointer to storage data structure Outputs: picId identifier of the picture will be stored here isIdrPic IDR flag of the picture will be stored here numErrMbs number of concealed macroblocks in the picture will be stored here Returns: pointer to the picture data NULL if no pictures available for display ------------------------------------------------------------------------------*/ u32* h264bsdNextOutputPictureYCbCrA(storage_t *pStorage, u32 *picId, u32 *isIdrPic, u32 *numErrMbs) { u32 width = h264bsdPicWidth(pStorage) * 16; u32 height = h264bsdPicHeight(pStorage) * 16; u8* data = h264bsdNextOutputPicture(pStorage, picId, isIdrPic, numErrMbs); size_t rgbSize = sizeof(u32) * width * height; if(data == NULL) return NULL; if(pStorage->rgbConversionBufferSize < rgbSize) { if(pStorage->rgbConversionBuffer != NULL) free(pStorage->rgbConversionBuffer); pStorage->rgbConversionBufferSize = rgbSize; pStorage->rgbConversionBuffer = (u32*)malloc(rgbSize); } h264bsdConvertToYCbCrA(width, height, data, pStorage->rgbConversionBuffer); return pStorage->rgbConversionBuffer; } /*------------------------------------------------------------------------------ Function: h264bsdPicWidth Functional description: Get width of the picture in macroblocks Inputs: pStorage pointer to storage data structure Outputs: none Returns: picture width 0 if parameters sets not yet activated ------------------------------------------------------------------------------*/ u32 h264bsdPicWidth(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); if (pStorage->activeSps) return(pStorage->activeSps->picWidthInMbs); else return(0); } /*------------------------------------------------------------------------------ Function: h264bsdPicHeight Functional description: Get height of the picture in macroblocks Inputs: pStorage pointer to storage data structure Outputs: none Returns: picture width 0 if parameters sets not yet activated ------------------------------------------------------------------------------*/ u32 h264bsdPicHeight(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); if (pStorage->activeSps) return(pStorage->activeSps->picHeightInMbs); else return(0); } /*------------------------------------------------------------------------------ Function: h264bsdFlushBuffer Functional description: Flush the decoded picture buffer, see dpb.c for details Inputs: pStorage pointer to storage data structure ------------------------------------------------------------------------------*/ void h264bsdFlushBuffer(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); h264bsdFlushDpb(pStorage->dpb); } /*------------------------------------------------------------------------------ Function: h264bsdCheckValidParamSets Functional description: Check if any valid parameter set combinations (SPS/PPS) exists. Inputs: pStorage pointer to storage structure Returns: 1 at least one valid SPS/PPS combination found 0 no valid param set combinations found ------------------------------------------------------------------------------*/ u32 h264bsdCheckValidParamSets(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); return(h264bsdValidParamSets(pStorage) == HANTRO_OK ? 1 : 0); } /*------------------------------------------------------------------------------ Function: h264bsdVideoRange Functional description: Get value of video_full_range_flag received in the VUI data. Inputs: pStorage pointer to storage structure Returns: 1 video_full_range_flag received and value is 1 0 otherwise ------------------------------------------------------------------------------*/ u32 h264bsdVideoRange(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); if (pStorage->activeSps && pStorage->activeSps->vuiParametersPresentFlag && pStorage->activeSps->vuiParameters && pStorage->activeSps->vuiParameters->videoSignalTypePresentFlag && pStorage->activeSps->vuiParameters->videoFullRangeFlag) return(1); else /* default value of video_full_range_flag is 0 */ return(0); } /*------------------------------------------------------------------------------ Function: h264bsdMatrixCoefficients Functional description: Get value of matrix_coefficients received in the VUI data Inputs: pStorage pointer to storage structure Outputs: value of matrix_coefficients if received 2 otherwise (this is the default value) ------------------------------------------------------------------------------*/ u32 h264bsdMatrixCoefficients(storage_t *pStorage) { /* Variables */ /* Code */ ASSERT(pStorage); if (pStorage->activeSps && pStorage->activeSps->vuiParametersPresentFlag && pStorage->activeSps->vuiParameters && pStorage->activeSps->vuiParameters->videoSignalTypePresentFlag && pStorage->activeSps->vuiParameters->colourDescriptionPresentFlag) return(pStorage->activeSps->vuiParameters->matrixCoefficients); else /* default unspecified */ return(2); } /*------------------------------------------------------------------------------ Function: hh264bsdCroppingParams Functional description: Get cropping parameters of the active SPS Inputs: pStorage pointer to storage structure Outputs: croppingFlag flag indicating if cropping params present is stored here leftOffset cropping left offset in pixels is stored here width width of the image after cropping is stored here topOffset cropping top offset in pixels is stored here height height of the image after cropping is stored here Returns: none ------------------------------------------------------------------------------*/ void h264bsdCroppingParams(storage_t *pStorage, u32 *croppingFlag, u32 *leftOffset, u32 *width, u32 *topOffset, u32 *height) { /* Variables */ /* Code */ ASSERT(pStorage); if (pStorage->activeSps && pStorage->activeSps->frameCroppingFlag) { *croppingFlag = 1; *leftOffset = 2 * pStorage->activeSps->frameCropLeftOffset; *width = 16 * pStorage->activeSps->picWidthInMbs - 2 * (pStorage->activeSps->frameCropLeftOffset + pStorage->activeSps->frameCropRightOffset); *topOffset = 2 * pStorage->activeSps->frameCropTopOffset; *height = 16 * pStorage->activeSps->picHeightInMbs - 2 * (pStorage->activeSps->frameCropTopOffset + pStorage->activeSps->frameCropBottomOffset); } else { *croppingFlag = 0; *leftOffset = 0; *width = 0; *topOffset = 0; *height = 0; } } /*------------------------------------------------------------------------------ Function: h264bsdSampleAspectRatio Functional description: Get aspect ratio received in the VUI data Inputs: pStorage pointer to storage structure Outputs: sarWidth sample aspect ratio height sarHeight sample aspect ratio width ------------------------------------------------------------------------------*/ void h264bsdSampleAspectRatio(storage_t *pStorage, u32 *sarWidth, u32 *sarHeight) { /* Variables */ u32 w = 1; u32 h = 1; /* Code */ ASSERT(pStorage); if (pStorage->activeSps && pStorage->activeSps->vuiParametersPresentFlag && pStorage->activeSps->vuiParameters && pStorage->activeSps->vuiParameters->aspectRatioPresentFlag ) { switch (pStorage->activeSps->vuiParameters->aspectRatioIdc) { case ASPECT_RATIO_UNSPECIFIED: w = 0; h = 0; break; case ASPECT_RATIO_1_1: w = 1; h = 1; break; case ASPECT_RATIO_12_11: w = 12; h = 11; break; case ASPECT_RATIO_10_11: w = 10; h = 11; break; case ASPECT_RATIO_16_11: w = 16; h = 11; break; case ASPECT_RATIO_40_33: w = 40; h = 33; break; case ASPECT_RATIO_24_11: w = 24; h = 11; break; case ASPECT_RATIO_20_11: w = 20; h = 11; break; case ASPECT_RATIO_32_11: w = 32; h = 11; break; case ASPECT_RATIO_80_33: w = 80; h = 33; break; case ASPECT_RATIO_18_11: w = 18; h = 11; break; case ASPECT_RATIO_15_11: w = 15; h = 11; break; case ASPECT_RATIO_64_33: w = 64; h = 33; break; case ASPECT_RATIO_160_99: w = 160; h = 99; break; case ASPECT_RATIO_EXTENDED_SAR: w = pStorage->activeSps->vuiParameters->sarWidth; h = pStorage->activeSps->vuiParameters->sarHeight; if ((w == 0) || (h == 0)) w = h = 0; break; default: w = 0; h = 0; break; } } /* set aspect ratio*/ *sarWidth = w; *sarHeight = h; } /*------------------------------------------------------------------------------ Function: h264bsdProfile Functional description: Get profile information from active SPS Inputs: pStorage pointer to storage structure Outputs: profile current profile ------------------------------------------------------------------------------*/ u32 h264bsdProfile(storage_t *pStorage) { if (pStorage->activeSps) return pStorage->activeSps->profileIdc; else return 0; } /*------------------------------------------------------------------------------ Function name: h264bsdAlloc Functional description: Allocate storage for a decoder Inputs: none Outputs: none Returns: pStorage pointer to uninitialized storage structure ------------------------------------------------------------------------------*/ storage_t* h264bsdAlloc() { return (storage_t*)malloc(sizeof(storage_t)); } /*------------------------------------------------------------------------------ Function name: h264bsdFree Functional description: Free storage for a decoder Inputs: pStorage pointer to storage structure Outputs: none Returns: none ------------------------------------------------------------------------------*/ void h264bsdFree(storage_t *pStorage) { free(pStorage); } /*------------------------------------------------------------------------------ Function: h264bsdConvertToRGBA Functional description: Convert decoded image data RGBA format. RGBA is the color format most commonly used by OpenGL. RGBA format uses u32 pixels where the MSB is alpha. *Note* While this function is available, it is not heavily optimized. If possible, you should use decoded image data directly. This function should only be used when there is no other way to get RGBA data. Inputs: width width of the image in pixels height height of the image in pixels data pointer to decoded image data Outputs: pOutput pointer to the buffer where the RGBA data will be written Returns: none ------------------------------------------------------------------------------*/ void h264bsdConvertToRGBA(u32 width, u32 height, u8* data, u32 *pOutput) { const int w = (int)width; const int h = (int)height; int x = 0; int y = 0; size_t ySize = w * h; size_t cbSize = w/2 * h/2; u8* luma = data; u8* cb = data + ySize; u8* cr = data + ySize + cbSize; u32* rgba = pOutput; while(y < h) { int c = *luma - 16; int d = *cb - 128; int e = *cr - 128; u32 r = (u32)CLIP1((298*c + 409*e + 128) >> 8); u32 g = (u32)CLIP1((298*c - 100*d - 208*e + 128) >> 8); u32 b = (u32)CLIP1((298*c + 516*d + 128) >> 8); u32 pixel = 0xff; pixel = (pixel << 8) + b; pixel = (pixel << 8) + g; pixel = (pixel << 8) + r; *rgba = pixel; ++x; ++rgba; ++luma; if(!(x & 1)) { ++cb; ++cr; } if(x < w) continue; x = 0; ++y; if(y & 1) { cb -= w/2; cr -= w/2; } } } /*------------------------------------------------------------------------------ Function: h264bsdConvertToBGRA Functional description: Convert decoded image data BGRA format. BGRA is the color format most commonly used by Windows. BGRA format uses u32 pixels where the MSB is alpha. *Note* While this function is available, it is not heavily optimized. If possible, you should use decoded image data directly. This function should only be used when there is no other way to get BGRA data. Inputs: width width of the image in pixels height height of the image in pixels data pointer to decoded image data Outputs: pOutput pointer to the buffer where the BGRA data will be written Returns: none ------------------------------------------------------------------------------*/ void h264bsdConvertToBGRA(u32 width, u32 height, u8* data, u32 *pOutput) { const int w = (int)width; const int h = (int)height; int x = 0; int y = 0; size_t ySize = w * h; size_t cbSize = w/2 * h/2; u8* luma = data; u8* cb = data + ySize; u8* cr = data + ySize + cbSize; u32* bgra = pOutput; while(y < h) { int c = *luma - 16; int d = *cb - 128; int e = *cr - 128; u32 r = (u32)CLIP1((298*c + 409*e + 128) >> 8); u32 g = (u32)CLIP1((298*c - 100*d - 208*e + 128) >> 8); u32 b = (u32)CLIP1((298*c + 516*d + 128) >> 8); u32 pixel = 0xff; pixel = (pixel << 8) + r; pixel = (pixel << 8) + g; pixel = (pixel << 8) + b; *bgra = pixel; ++x; ++bgra; ++luma; if(!(x & 1)) { ++cb; ++cr; } if(x < w) continue; x = 0; ++y; if(y & 1) { cb -= w/2; cr -= w/2; } } } /*------------------------------------------------------------------------------ Function: h264bsdConvertToYCbCrA Functional description: Convert decoded image data YCbCrA format. YCbCrA is a 4:4:4 format that uses u32 pixels where the MSB is alpha. *Note* While this function is available, it is not heavily optimized. If possible, you should use decoded image data directly. This function should only be used when there is no other way to get YCbCrA data. Inputs: width width of the image in pixels height height of the image in pixels data pointer to decoded image data Outputs: pOutput pointer to the buffer where the YCbCrA data will be written Returns: none ------------------------------------------------------------------------------*/ void h264bsdConvertToYCbCrA(u32 width, u32 height, u8* data, u32 *pOutput) { const int w = (int)width; const int h = (int)height; int x = 0; int y = 0; size_t ySize = w * h; size_t cbSize = w/2 * h/2; u8* luma = data; u8* cb = data + ySize; u8* cr = data + ySize + cbSize; u32* yCbCr = pOutput; while(y < h) { u32 pixel = 0xff; pixel = (pixel << 8) + *cr; pixel = (pixel << 8) + *cb; pixel = (pixel << 8) + *luma; *yCbCr = pixel; ++x; ++yCbCr; ++luma; if(!(x & 1)) { ++cb; ++cr; } if(x < w) continue; x = 0; ++y; if(y & 1) { cb -= w/2; cr -= w/2; } } }