ref: 0de3b3b18c831f45b037ae67a3742ebd2c9e9d41
dir: /LEAF_JUCEPlugin/Source/Yin.cpp/
/* ============================================================================== Yin.c Created: 17 Jan 2017 1:20:23pm Author: Michael R Mulshine ============================================================================== */ #include "Yin.h" #include <stdint.h> /* For standard interger types (int16_t) */ #include <stdlib.h> /* For call to malloc */ /* ------------------------------------------------------------------------------------------ --------------------------------------------------------------------------- PRIVATE FUNCTIONS -------------------------------------------------------------------------------------------*/ /** * Step 1: Calculates the squared difference of the signal with a shifted version of itself. * @param buffer Buffer of samples to process. * * This is the Yin algorithms tweak on autocorellation. Read http://audition.ens.fr/adc/pdf/2002_JASA_YIN.pdf * for more details on what is in here and why it's done this way. */ void Yin_difference(Yin *yin, int16_t* buffer){ int16_t i; int16_t tau; float delta; /* Calculate the difference for difference shift values (tau) for the half of the samples */ for(tau = 0 ; tau < yin->halfBufferSize; tau++){ /* Take the difference of the signal with a shifted version of itself, then square it. * (This is the Yin algorithm's tweak on autocorellation) */ for(i = 0; i < yin->halfBufferSize; i++){ delta = buffer[i] - buffer[i + tau]; yin->yinBuffer[tau] += delta * delta; } } } /** * Step 2: Calculate the cumulative mean on the normalised difference calculated in step 1 * @param yin #Yin structure with information about the signal * * This goes through the Yin autocorellation values and finds out roughly where shift is which * produced the smallest difference */ void Yin_cumulativeMeanNormalizedDifference(Yin *yin){ int16_t tau; float runningSum = 0; yin->yinBuffer[0] = 1; /* Sum all the values in the autocorellation buffer and nomalise the result, replacing * the value in the autocorellation buffer with a cumulative mean of the normalised difference */ for (tau = 1; tau < yin->halfBufferSize; tau++) { runningSum += yin->yinBuffer[tau]; yin->yinBuffer[tau] *= tau / runningSum; } } /** * Step 3: Search through the normalised cumulative mean array and find values that are over the threshold * @return Shift (tau) which caused the best approximate autocorellation. -1 if no suitable value is found over the threshold. */ int16_t Yin_absoluteThreshold(Yin *yin){ int16_t tau; /* Search through the array of cumulative mean values, and look for ones that are over the threshold * The first two positions in yinBuffer are always so start at the third (index 2) */ for (tau = 2; tau < yin->halfBufferSize ; tau++) { if (yin->yinBuffer[tau] < yin->threshold) { while (tau + 1 < yin->halfBufferSize && yin->yinBuffer[tau + 1] < yin->yinBuffer[tau]) { tau++; } /* found tau, exit loop and return * store the probability * From the YIN paper: The yin->threshold determines the list of * candidates admitted to the set, and can be interpreted as the * proportion of aperiodic power tolerated * within a periodic signal. * * Since we want the periodicity and and not aperiodicity: * periodicity = 1 - aperiodicity */ yin->probability = 1 - yin->yinBuffer[tau]; break; } } /* if no pitch found, tau => -1 */ if (tau == yin->halfBufferSize || yin->yinBuffer[tau] >= yin->threshold) { tau = -1; yin->probability = 0; } return tau; } /** * Step 5: Interpolate the shift value (tau) to improve the pitch estimate. * @param yin [description] * @param tauEstimate [description] * @return [description] * * The 'best' shift value for autocorellation is most likely not an interger shift of the signal. * As we only autocorellated using integer shifts we should check that there isn't a better fractional * shift value. */ float Yin_parabolicInterpolation(Yin *yin, int16_t tauEstimate) { float betterTau; int16_t x0; int16_t x2; /* Calculate the first polynomial coeffcient based on the current estimate of tau */ if (tauEstimate < 1) { x0 = tauEstimate; } else { x0 = tauEstimate - 1; } /* Calculate the second polynomial coeffcient based on the current estimate of tau */ if (tauEstimate + 1 < yin->halfBufferSize) { x2 = tauEstimate + 1; } else { x2 = tauEstimate; } /* Algorithm to parabolically interpolate the shift value tau to find a better estimate */ if (x0 == tauEstimate) { if (yin->yinBuffer[tauEstimate] <= yin->yinBuffer[x2]) { betterTau = tauEstimate; } else { betterTau = x2; } } else if (x2 == tauEstimate) { if (yin->yinBuffer[tauEstimate] <= yin->yinBuffer[x0]) { betterTau = tauEstimate; } else { betterTau = x0; } } else { float s0, s1, s2; s0 = yin->yinBuffer[x0]; s1 = yin->yinBuffer[tauEstimate]; s2 = yin->yinBuffer[x2]; // fixed AUBIO implementation, thanks to Karl Helgason: // (2.0f * s1 - s2 - s0) was incorrectly multiplied with -1 betterTau = tauEstimate + (s2 - s0) / (2 * (2 * s1 - s2 - s0)); } return betterTau; } /* ------------------------------------------------------------------------------------------ ---------------------------------------------------------------------------- PUBLIC FUNCTIONS -------------------------------------------------------------------------------------------*/ /** * Initialise the Yin pitch detection object * @param yin Yin pitch detection object to initialise * @param bufferSize Length of the audio buffer to analyse * @param threshold Allowed uncertainty (e.g 0.05 will return a pitch with ~95% probability) */ void Yin_init(Yin *yin, int16_t bufferSize, float threshold){ /* Initialise the fields of the Yin structure passed in */ yin->bufferSize = bufferSize; yin->halfBufferSize = bufferSize / 2; yin->probability = 0.0; yin->threshold = threshold; /* Allocate the autocorellation buffer and initialise it to zero */ yin->yinBuffer = (float *) malloc(sizeof(float)* yin->halfBufferSize); int16_t i; for(i = 0; i < yin->halfBufferSize; i++){ yin->yinBuffer[i] = 0; } } /** * Runs the Yin pitch detection algortihm * @param yin Initialised Yin object * @param buffer Buffer of samples to analyse * @return Fundamental frequency of the signal in Hz. Returns -1 if pitch can't be found */ float Yin_getPitch(Yin *yin, int16_t* buffer){ int16_t tauEstimate = -1; float pitchInHertz = -1; /* Step 1: Calculates the squared difference of the signal with a shifted version of itself. */ Yin_difference(yin, buffer); /* Step 2: Calculate the cumulative mean on the normalised difference calculated in step 1 */ Yin_cumulativeMeanNormalizedDifference(yin); /* Step 3: Search through the normalised cumulative mean array and find values that are over the threshold */ tauEstimate = Yin_absoluteThreshold(yin); /* Step 5: Interpolate the shift value (tau) to improve the pitch estimate. */ if(tauEstimate != -1){ pitchInHertz = YIN_SAMPLING_RATE / Yin_parabolicInterpolation(yin, tauEstimate); } return pitchInHertz; } /** * Certainty of the pitch found * @param yin Yin object that has been run over a buffer * @return Returns the certainty of the note found as a decimal (i.e 0.3 is 30%) */ float Yin_getProbability(Yin *yin){ return yin->probability; }