ref: e973cfae0d52e62c305332cfd42518fc238b6339
dir: /LEAF/Src/leaf-mempool.c/
/** mpool source significantly modified by Mike Mulshine, Jeff Snyder, et al., Princeton University Music Department **/ /** In short, mpool is distributed under so called "BSD license", Copyright (c) 2009-2010 Tatsuhiko Kubo <cubicdaiya@gmail.com> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the authors nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* written with C99 style */ #if _WIN32 || _WIN64 #include "..\Inc\leaf-mempool.h" #include "..\leaf.h" #else #include "../Inc/leaf-mempool.h" #include "../leaf.h" #endif _tMempool leaf_pool; tMempool leaf_mempool; size_t header_size; /** * private function */ static inline size_t mpool_align(size_t size); static inline mpool_node_t* create_node(void* block_location, mpool_node_t* next, mpool_node_t* prev, size_t size); static inline void delink_node(mpool_node_t* node); /** * create memory pool */ void mpool_create (char* memory, size_t size, mpool_t* pool) { header_size = mpool_align(sizeof(mpool_node_t)); pool->mpool = (void*)memory; pool->usize = 0; pool->msize = size; pool->head = create_node(pool->mpool, NULL, NULL, pool->msize-header_size); for (int i = 0; i < pool->head->size; i++) { memory[i+header_size]=0; } } void leaf_pool_init(char* memory, size_t size) { mpool_create(memory, size, &leaf_pool.pool); leaf_mempool = &leaf_pool; } /** * allocate memory from memory pool */ void* mpool_alloc(size_t asize, mpool_t* pool) { // If the head is NULL, the mempool is full if (pool->head == NULL) return NULL; // Should we alloc the first block large enough or check all blocks and pick the one closest in size? size_t size_to_alloc = mpool_align(asize); mpool_node_t* node_to_alloc = pool->head; // Traverse the free list for a large enough block while (node_to_alloc->size < size_to_alloc) { node_to_alloc = node_to_alloc->next; // If we reach the end of the free list, there // are no blocks large enough, return NULL if (node_to_alloc == NULL) return NULL; } // Create a new node after the node to be allocated if there is enough space mpool_node_t* new_node; size_t leftover = node_to_alloc->size - size_to_alloc; node_to_alloc->size = size_to_alloc; if (leftover > header_size) { long offset = (char*) node_to_alloc - (char*) pool->mpool; offset += header_size + node_to_alloc->size; new_node = create_node(&pool->mpool[offset], node_to_alloc->next, node_to_alloc->prev, leftover - header_size); } else { // Add any leftover space to the allocated node to avoid fragmentation node_to_alloc->size += leftover; new_node = node_to_alloc->next; } // Update the head if we are allocating the first node of the free list // The head will be NULL if there is no space left if (pool->head == node_to_alloc) { pool->head = new_node; } // Remove the allocated node from the free list delink_node(node_to_alloc); pool->usize += header_size + node_to_alloc->size; // Return the pool of the allocated node; return node_to_alloc->pool; } /** * allocate memory from memory pool and also clear that memory to be blank */ void* mpool_calloc(size_t asize, mpool_t* pool) { // If the head is NULL, the mempool is full if (pool->head == NULL) return NULL; // Should we alloc the first block large enough or check all blocks and pick the one closest in size? size_t size_to_alloc = mpool_align(asize); mpool_node_t* node_to_alloc = pool->head; // Traverse the free list for a large enough block while (node_to_alloc->size < size_to_alloc) { node_to_alloc = node_to_alloc->next; // If we reach the end of the free list, there // are no blocks large enough, return NULL if (node_to_alloc == NULL) return NULL; } // Create a new node after the node to be allocated if there is enough space mpool_node_t* new_node; size_t leftover = node_to_alloc->size - size_to_alloc; node_to_alloc->size = size_to_alloc; if (leftover > header_size) { long offset = (char*) node_to_alloc - (char*) pool->mpool; offset += header_size + node_to_alloc->size; new_node = create_node(&pool->mpool[offset], node_to_alloc->next, node_to_alloc->prev, leftover - header_size); } else { // Add any leftover space to the allocated node to avoid fragmentation node_to_alloc->size += leftover; new_node = node_to_alloc->next; } // Update the head if we are allocating the first node of the free list // The head will be NULL if there is no space left if (pool->head == node_to_alloc) { pool->head = new_node; } // Remove the allocated node from the free list delink_node(node_to_alloc); pool->usize += header_size + node_to_alloc->size; // Format the new pool char* new_pool = (char*)node_to_alloc->pool; for (int i = 0; i < node_to_alloc->size; i++) new_pool[i] = 0; // Return the pool of the allocated node; return node_to_alloc->pool; } void* leaf_alloc(size_t size) { //printf("alloc %i\n", size); void* block = mpool_alloc(size, &leaf_pool.pool); if (block == NULL) leaf_mempool_overrun(); return block; } void* leaf_calloc(size_t size) { //printf("alloc %i\n", size); void* block = mpool_calloc(size, &leaf_pool.pool); if (block == NULL) leaf_mempool_overrun(); return block; } void mpool_free(void* ptr, mpool_t* pool) { //if (ptr < pool->mpool || ptr >= pool->mpool + pool->msize) // Get the node at the freed space mpool_node_t* freed_node = (mpool_node_t*) (ptr - header_size); pool->usize -= header_size + freed_node->size; // Check each node in the list against the newly freed one to see if it's adjacent in memory mpool_node_t* other_node = pool->head; mpool_node_t* next_node; while (other_node != NULL) { next_node = other_node->next; // Check if a node is directly after the freed node if ((long) freed_node + (header_size + freed_node->size) == (long) other_node) { // Increase freed node's size freed_node->size += header_size + other_node->size; // If we are merging with the head, move the head forward if (other_node == pool->head) pool->head = pool->head->next; // Delink the merged node delink_node(other_node); } // Check if a node is directly before the freed node else if ((long) other_node + (header_size + other_node->size) == (long) freed_node) { // Increase the merging node's size other_node->size += header_size + freed_node->size; if (other_node != pool->head) { // Delink the merging node delink_node(other_node); // Attach the merging node to the head other_node->next = pool->head; // Merge freed_node = other_node; } else { // If we are merging with the head, move the head forward pool->head = pool->head->next; // Merge freed_node = other_node; } } other_node = next_node; } // Ensure the freed node is attached to the head freed_node->next = pool->head; if (pool->head != NULL) pool->head->prev = freed_node; pool->head = freed_node; // Format the freed pool // char* freed_pool = (char*)freed_node->pool; // for (int i = 0; i < freed_node->size; i++) freed_pool[i] = 0; } void leaf_free(void* ptr) { mpool_free(ptr, &leaf_pool.pool); } size_t mpool_get_size(mpool_t* pool) { return pool->msize; } size_t mpool_get_used(mpool_t* pool) { return pool->usize; } size_t leaf_pool_get_size(void) { return mpool_get_size(&leaf_pool.pool); } size_t leaf_pool_get_used(void) { return mpool_get_used(&leaf_pool.pool); } void* leaf_pool_get_pool(void) { float* buff = (float*)leaf_pool.pool.mpool; return buff; } /** * align byte boundary */ static inline size_t mpool_align(size_t size) { return (size + (MPOOL_ALIGN_SIZE - 1)) & ~(MPOOL_ALIGN_SIZE - 1); } static inline mpool_node_t* create_node(void* block_location, mpool_node_t* next, mpool_node_t* prev, size_t size) { mpool_node_t* node = (mpool_node_t*)block_location; node->pool = block_location + header_size; node->next = next; node->prev = prev; node->size = size; return node; } static inline void delink_node(mpool_node_t* node) { // If there is a node after the node to remove if (node->next != NULL) { // Close the link node->next->prev = node->prev; } // If there is a node before the node to remove if (node->prev != NULL) { // Close the link node->prev->next = node->next; } node->next = NULL; node->prev = NULL; } void leaf_mempool_overrun(void) { //TODO: we should set up some kind of leaf_error method that reaches user space to notify library users of things that failed. } void tMempool_init(tMempool* const mp, char* memory, size_t size) { tMempool_initToPool(mp, memory, size, &leaf_mempool); } void tMempool_free(tMempool* const mp) { tMempool_freeFromPool(mp, &leaf_mempool); } void tMempool_initToPool (tMempool* const mp, char* memory, size_t size, tMempool* const mem) { _tMempool* mm = *mem; _tMempool* m = *mp = (_tMempool*) mpool_alloc(sizeof(_tMempool), &mm->pool); mpool_create (memory, size, &m->pool); } void tMempool_freeFromPool (tMempool* const mp, tMempool* const mem) { _tMempool* mm = *mem; _tMempool* m = *mp; mpool_free(m, &mm->pool); }