shithub: leaf

ref: f0d8dedb45838219f1e56debb2dd24cf2341d804
dir: /LEAF/Src/leaf-math.c/

View raw version
/*==============================================================================

    leaf-math.c
    Created: 22 Jan 2017 7:02:56pm
    Author:  Michael R Mulshine

==============================================================================*/

#if _WIN32 || _WIN64

#include "..\Inc\leaf-math.h"
#include "..\Inc\leaf-tables.h"

#else

#include "../Inc/leaf-math.h"
#include "../Inc/leaf-tables.h"

#endif

// The C-embedded Audio Library.
#define TWO_TO_16 65536.f

#define EXPONENTIAL_TABLE_SIZE 65536

float interpolate3max(float *buf, const int peakindex)
{
    float a = buf[peakindex-1];
    float b = buf[peakindex];
    float c = buf[peakindex+1];
    float realpeak;
    
    realpeak = b + (float)0.125 * (c - a) * (c - a) / ((float)2. * b - a - c);
    
    return(realpeak);
}

float interpolate3phase(float *buf, const int peakindex)
{
    float a = buf[peakindex-1];
    float b = buf[peakindex];
    float c = buf[peakindex+1];
    float fraction;
    
    fraction = ((float)0.5 * (c - a)) / ((float)2. * b - a - c);
    
    return(fraction);
}

// alternative implementation for abs()
// REQUIRES: 32 bit integers
int fastabs_int(int in){
    unsigned int r;
    int const mask = in >> 31;
    
    r = (in ^ mask) - mask;
    
    return (r);
}

// alternative implementation for abs()
// REQUIRES: 32 bit floats
float fastabs(float f)
{
    union
    {
        float f;
        unsigned int ui;
    }alias;
    
    alias.f = f;
    alias.ui &= 0x7fffffff;
    return alias.f;
}

// dope af
float LEAF_chebyshevT(float in, int n){
	if (n == 0) return 1;
	else if (n == 1) return in;
	else return 2.0f * in * LEAF_chebyshevT(in, n-1) - LEAF_chebyshevT(in, n-2);
}

#if !(_WIN32 || _WIN64)
float LEAF_CompoundChebyshevT(float in, int n, float* amps){
	float T[n+1];
	T[0] = 1.0f;
	T[1] = in;
	for (int i = 2; i <= n; ++i)
		T[i] = 2*in*T[i-1] - T[i-2];
	float out = 0;
	float amp = 0;
	for (int i = 0; i < n; ++i){
		out += amps[i]*T[i+1];
		amp += amps[i];
	}
	return out / amp ;
}
#endif

float LEAF_frequencyToMidi(float f)
{
	return (69.0f + 12.0f * log2(f * INV_440));
}

// Jones shaper
float LEAF_shaper(float input, float m_drive) 
{
    float fx = input * 2.0f;    // prescale
    float w, c, xc, xc2, xc4;

    xc = LEAF_clip(-SQRT8, fx, SQRT8);
    xc2 = xc*xc;
    c = 0.5f*fx*(3.0f - (xc2));
    xc4 = xc2 * xc2;
    w = (1.0f - xc2*0.25f + xc4*0.015625f) * WSCALE;
    float shaperOut = w*(c+ 0.05f*xc2)*(m_drive + 0.75f);
    shaperOut *= 0.5f;    // post_scale
    return shaperOut;
}

// reduce sample resolution
float hold = 0.f;
int reduct_count = 0;


float LEAF_reduct (float input, float ratio)
{
    reduct_count++;
    if (reduct_count > 1.f / ratio)
    {
        hold = input;
        reduct_count = 0;
    }
    
    return hold;
}

// round input to nearest rnd
float LEAF_round (float input, float rnd)
{
    rnd = fabsf(rnd);
    
    if (rnd <= 0.0000001f) return input;
    
    float scale = 1.f / rnd;
    
    return roundf(input * scale) / scale;
}

union unholy_t unholy;

float LEAF_bitwise_xor(float input, uint32_t op)
{
    unholy.f = input;
    unholy.i = (unholy.i ^ op);
    
    return unholy.f;
}

float LEAF_reedTable(float input, float offset, float slope) 
{
    float output = offset + (slope * input);
    if ( output > 1.0f) output = 1.0f;
    if ( output < -1.0f) output = -1.0f;
    return output;
}

float   LEAF_softClip(float val, float thresh) 
{
	float x;
	
	if(val > thresh)
	{
			x = thresh / val;
			return (1.0f - x) * (1.0f - thresh) + thresh;
	}
	else if(val < -thresh)
	{
			x = -thresh / val;
			return -((1.0f - x) * (1.0f - thresh) + thresh);
	}
	else
	{
		return val;
	}
}

float   LEAF_clip(float min, float val, float max) 
	{
    
    if (val < min) {
        return min;
    } else if (val > max) {
        return max;
    } else {
        return val;
    }
}

int   LEAF_clipInt(int min, int val, int max)
{
    if (val < min) {
        return min;
    } else if (val > max) {
        return max;
    } else {
        return val;
    }
}

oBool     LEAF_isPrime(uint64_t number )
{
    if ( number == 2 ) return OTRUE;
    if ( number & 1 ) {
        for ( int i=3; i<(int)sqrt((double)number)+1; i+=2 )
            if ( (number % i) == 0 ) return OFALSE;
        return OTRUE; // prime
    }
    else return OFALSE; // even
}

// Adapted from MusicDSP: http://www.musicdsp.org/showone.php?id=238
float LEAF_tanh(float x)
{
    
    if( x < -3 )
        return -1;
    else if( x > 3 )
        return 1;
    else
        return x * ( 27 + x * x ) / ( 27 + 9 * x * x );
}


void LEAF_generate_sine(float* buffer, int size)
{
    float phase;
    for (int i = 0; i < size; i++)
    {
        phase = (float) i / (float) size;
        buffer[i] = sinf(phase * TWO_PI);
    }
}

void LEAF_generate_sawtooth(float* buffer, float basefreq, int size)
{
    int harmonic = 1;
    float phase = 0.0f;
    float freq = harmonic * basefreq;
    float amp;
    
    while (freq < (leaf.sampleRate * 0.5))
    {
        amp = 1.0f / harmonic;
        for (int i = 0; i < size; i++)
        {
            phase = (float) i / (float) size;
            buffer[i] += (amp * sinf(harmonic * phase * TWO_PI));
        }
        
        harmonic++;
        freq = harmonic * basefreq;
    }
}


void LEAF_generate_triangle(float* buffer, float basefreq, int size)
{
    int harmonic = 1;
    float phase = 0.0f;
    float freq = harmonic * basefreq;
    float amp = 1.0f;
    
    int count = 0;
    float mult = 1.0f;
    
    while (freq < (leaf.sampleRate * 0.5))
    {
        amp = 1.0f / (float)(harmonic * harmonic);
        
        if (count % 2)  mult = -1.0f;
        else            mult =  1.0f;
        
        for (int i = 0; i < size; i++)
        {
            phase = (float) i / (float) size;
            buffer[i] += (mult * amp * sinf(harmonic * phase * TWO_PI));
        }
        
        count++;
        harmonic += 2;
        freq = harmonic * basefreq;
    }
}

void LEAF_generate_square(float* buffer, float basefreq, int size)
{
    int harmonic = 1;
    float phase = 0.0f;
    float freq = harmonic * basefreq;
    float amp = 1.0f;
    
    while (freq < (leaf.sampleRate * 0.5))
    {
        amp = 1.0f / (float)(harmonic);
        
        for (int i = 0; i < size; i++)
        {
            phase = (float) i / (float) size;
            buffer[i] += (amp * sinf(harmonic * phase * TWO_PI));
        }
        
        harmonic += 2;
        freq = harmonic * basefreq;
    }
}


//-----------------------------------------------------------------------------
// name: mtof()
// desc: midi to freq, from PD source
//-----------------------------------------------------------------------------
float LEAF_midiToFrequency(float f)
{
    if( f <= -1500.0f ) return (0);
    else if( f > 1499.0f ) return (LEAF_midiToFrequency(1499.0f));
    else return ( powf(2.0f, (f - 69.0f) * 0.083333333333333f) * 440.0f );
}


// alpha, [0.0, 1.0]
float LEAF_interpolate_hermite (float A, float B, float C, float D, float alpha)
{
    alpha = LEAF_clip(0.0f, alpha, 1.0f);

    float a = -A/2.0f + (3.0f*B)/2.0f - (3.0f*C)/2.0f + D/2.0f;
    float b = A - (5.0f*B)/2.0f + 2.0f*C - D / 2.0f;
    float c = -A/2.0f + C/2.0f;
    float d = B;

    return a*alpha*alpha*alpha + b*alpha*alpha + c*alpha + d;
}

// alpha, [0.0, 1.0]
float LEAF_interpolation_linear (float A, float B, float alpha)
{
    alpha = LEAF_clip(0.0f, alpha, 1.0f);

    float omAlpha = 1.0f - alpha;

    // First 1/2 of interpolation
    float out = A * omAlpha;

    out += B * alpha;

    return out;
}