ref: 0af40df746b47057e3f416fbfc49d83e324741b4
dir: /vp9/common/vp9_reconintra.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #if CONFIG_VP9_HIGHBITDEPTH #include "vpx_dsp/vpx_dsp_common.h" #endif // CONFIG_VP9_HIGHBITDEPTH #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/vpx_once.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_onyxc_int.h" const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = { DCT_DCT, // DC ADST_DCT, // V DCT_ADST, // H DCT_DCT, // D45 ADST_ADST, // D135 ADST_DCT, // D117 DCT_ADST, // D153 DCT_ADST, // D207 ADST_DCT, // D63 ADST_ADST, // TM }; enum { NEED_LEFT = 1 << 1, NEED_ABOVE = 1 << 2, NEED_ABOVERIGHT = 1 << 3, }; static const uint8_t extend_modes[INTRA_MODES] = { NEED_ABOVE | NEED_LEFT, // DC NEED_ABOVE, // V NEED_LEFT, // H NEED_ABOVERIGHT, // D45 NEED_LEFT | NEED_ABOVE, // D135 NEED_LEFT | NEED_ABOVE, // D117 NEED_LEFT | NEED_ABOVE, // D153 NEED_LEFT, // D207 NEED_ABOVERIGHT, // D63 NEED_LEFT | NEED_ABOVE, // TM }; typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left); static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; static intra_pred_fn dc_pred[2][2][TX_SIZES]; #if CONFIG_VP9_HIGHBITDEPTH typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, const uint16_t *above, const uint16_t *left, int bd); static intra_high_pred_fn pred_high[INTRA_MODES][4]; static intra_high_pred_fn dc_pred_high[2][2][4]; #endif // CONFIG_VP9_HIGHBITDEPTH static void vp9_init_intra_predictors_internal(void) { #define INIT_ALL_SIZES(p, type) \ p[TX_4X4] = vpx_##type##_predictor_4x4; \ p[TX_8X8] = vpx_##type##_predictor_8x8; \ p[TX_16X16] = vpx_##type##_predictor_16x16; \ p[TX_32X32] = vpx_##type##_predictor_32x32 INIT_ALL_SIZES(pred[V_PRED], v); INIT_ALL_SIZES(pred[H_PRED], h); INIT_ALL_SIZES(pred[D207_PRED], d207); INIT_ALL_SIZES(pred[D45_PRED], d45); INIT_ALL_SIZES(pred[D63_PRED], d63); INIT_ALL_SIZES(pred[D117_PRED], d117); INIT_ALL_SIZES(pred[D135_PRED], d135); INIT_ALL_SIZES(pred[D153_PRED], d153); INIT_ALL_SIZES(pred[TM_PRED], tm); INIT_ALL_SIZES(dc_pred[0][0], dc_128); INIT_ALL_SIZES(dc_pred[0][1], dc_top); INIT_ALL_SIZES(dc_pred[1][0], dc_left); INIT_ALL_SIZES(dc_pred[1][1], dc); #if CONFIG_VP9_HIGHBITDEPTH INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207); INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45); INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63); INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); #endif // CONFIG_VP9_HIGHBITDEPTH #undef intra_pred_allsizes } #if CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors_high( const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane, int bd) { int i; uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); DECLARE_ALIGNED(16, uint16_t, left_col[32]); DECLARE_ALIGNED(16, uint16_t, above_data[64 + 16]); uint16_t *above_row = above_data + 16; const uint16_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int need_left = extend_modes[mode] & NEED_LEFT; const int need_above = extend_modes[mode] & NEED_ABOVE; const int need_aboveright = extend_modes[mode] & NEED_ABOVERIGHT; int base = 128 << (bd - 8); // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // For 10 bit and 12 bit, 127 and 129 are replaced by base -1 and base + 1. // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // NEED_LEFT if (need_left) { if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } else { vpx_memset16(left_col, base + 1, bs); } } // NEED_ABOVE if (need_above) { if (up_available) { const uint16_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + bs <= frame_width) { memcpy(above_row, above_ref, bs * sizeof(above_row[0])); } else if (x0 <= frame_width) { const int r = frame_width - x0; memcpy(above_row, above_ref, r * sizeof(above_row[0])); vpx_memset16(above_row + r, above_row[r - 1], x0 + bs - frame_width); } } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { memcpy(above_row, above_ref, bs * sizeof(above_row[0])); } } above_row[-1] = left_available ? above_ref[-1] : (base + 1); } else { vpx_memset16(above_row, base - 1, bs); above_row[-1] = base - 1; } } // NEED_ABOVERIGHT if (need_aboveright) { if (up_available) { const uint16_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { memcpy(above_row, above_ref, 2 * bs * sizeof(above_row[0])); } else { memcpy(above_row, above_ref, bs * sizeof(above_row[0])); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { memcpy(above_row, above_ref, r * sizeof(above_row[0])); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { memcpy(above_row, above_ref, bs * sizeof(above_row[0])); vpx_memset16(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; memcpy(above_row, above_ref, r * sizeof(above_row[0])); vpx_memset16(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } above_row[-1] = left_available ? above_ref[-1] : (base + 1); } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { memcpy(above_row, above_ref, bs * sizeof(above_row[0])); if (bs == 4 && right_available) memcpy(above_row + bs, above_ref + bs, bs * sizeof(above_row[0])); else vpx_memset16(above_row + bs, above_row[bs - 1], bs); above_row[-1] = left_available ? above_ref[-1] : (base + 1); } } } else { vpx_memset16(above_row, base - 1, bs * 2); above_row[-1] = base - 1; } } // predict if (mode == DC_PRED) { dc_pred_high[left_available][up_available][tx_size]( dst, dst_stride, const_above_row, left_col, xd->bd); } else { pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, xd->bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane) { int i; DECLARE_ALIGNED(16, uint8_t, left_col[32]); DECLARE_ALIGNED(16, uint8_t, above_data[64 + 16]); uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // NEED_LEFT if (extend_modes[mode] & NEED_LEFT) { if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } else { memset(left_col, 129, bs); } } // NEED_ABOVE if (extend_modes[mode] & NEED_ABOVE) { if (up_available) { const uint8_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + bs <= frame_width) { memcpy(above_row, above_ref, bs); } else if (x0 <= frame_width) { const int r = frame_width - x0; memcpy(above_row, above_ref, r); memset(above_row + r, above_row[r - 1], x0 + bs - frame_width); } } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { memcpy(above_row, above_ref, bs); } } above_row[-1] = left_available ? above_ref[-1] : 129; } else { memset(above_row, 127, bs); above_row[-1] = 127; } } // NEED_ABOVERIGHT if (extend_modes[mode] & NEED_ABOVERIGHT) { if (up_available) { const uint8_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { memcpy(above_row, above_ref, 2 * bs); } else { memcpy(above_row, above_ref, bs); memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { memcpy(above_row, above_ref, r); memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { memcpy(above_row, above_ref, bs); memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; memcpy(above_row, above_ref, r); memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { memcpy(above_row, above_ref, bs); if (bs == 4 && right_available) memcpy(above_row + bs, above_ref + bs, bs); else memset(above_row + bs, above_row[bs - 1], bs); } } above_row[-1] = left_available ? above_ref[-1] : 129; } else { memset(above_row, 127, bs * 2); above_row[-1] = 127; } } // predict if (mode == DC_PRED) { dc_pred[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); } } void vp9_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, TX_SIZE tx_size, PREDICTION_MODE mode, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, int aoff, int loff, int plane) { const int bw = (1 << bwl_in); const int txw = (1 << tx_size); const int have_top = loff || (xd->above_mi != NULL); const int have_left = aoff || (xd->left_mi != NULL); const int have_right = (aoff + txw) < bw; const int x = aoff * 4; const int y = loff * 4; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane, xd->bd); return; } #endif build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane); } void vp9_init_intra_predictors(void) { once(vp9_init_intra_predictors_internal); }