ref: 154da5ba5a1f133c546d49324a26b458a9defa0e
dir: /vp8/decoder/threading.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp8_rtcd.h" #if !defined(WIN32) && CONFIG_OS_SUPPORT == 1 #include <unistd.h> #endif #include "onyxd_int.h" #include "vpx_mem/vpx_mem.h" #include "vp8/common/common.h" #include "vp8/common/threading.h" #include "vp8/common/loopfilter.h" #include "vp8/common/extend.h" #include "vpx_ports/vpx_timer.h" #include "decoderthreading.h" #include "detokenize.h" #include "vp8/common/reconintra4x4.h" #include "vp8/common/reconinter.h" #include "vp8/common/reconintra.h" #include "vp8/common/setupintrarecon.h" #if CONFIG_ERROR_CONCEALMENT #include "error_concealment.h" #endif #define CALLOC_ARRAY(p, n) CHECK_MEM_ERROR((p), vpx_calloc(sizeof(*(p)), (n))) #define CALLOC_ARRAY_ALIGNED(p, n, algn) \ do { \ CHECK_MEM_ERROR((p), vpx_memalign((algn), sizeof(*(p)) * (n))); \ memset((p), 0, (n) * sizeof(*(p))); \ } while (0) static void setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count) { VP8_COMMON *const pc = &pbi->common; int i; for (i = 0; i < count; ++i) { MACROBLOCKD *mbd = &mbrd[i].mbd; mbd->subpixel_predict = xd->subpixel_predict; mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mbd->frame_type = pc->frame_type; mbd->pre = xd->pre; mbd->dst = xd->dst; mbd->segmentation_enabled = xd->segmentation_enabled; mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); /*signed char ref_lf_deltas[MAX_REF_LF_DELTAS];*/ memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas)); /*signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];*/ memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas)); /*unsigned char mode_ref_lf_delta_enabled; unsigned char mode_ref_lf_delta_update;*/ mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled; mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update; mbd->current_bc = &pbi->mbc[0]; memcpy(mbd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc)); memcpy(mbd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1)); memcpy(mbd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2)); memcpy(mbd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv)); mbd->fullpixel_mask = 0xffffffff; if (pc->full_pixel) mbd->fullpixel_mask = 0xfffffff8; } for (i = 0; i < pc->mb_rows; ++i) vpx_atomic_store_release(&pbi->mt_current_mb_col[i], -1); } static void mt_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx) { MB_PREDICTION_MODE mode; int i; #if CONFIG_ERROR_CONCEALMENT int corruption_detected = 0; #else (void)mb_idx; #endif if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else if (!vp8dx_bool_error(xd->current_bc)) { int eobtotal; eobtotal = vp8_decode_mb_tokens(pbi, xd); /* Special case: Force the loopfilter to skip when eobtotal is zero */ xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal == 0); } mode = xd->mode_info_context->mbmi.mode; if (xd->segmentation_enabled) vp8_mb_init_dequantizer(pbi, xd); #if CONFIG_ERROR_CONCEALMENT if (pbi->ec_active) { int throw_residual; /* When we have independent partitions we can apply residual even * though other partitions within the frame are corrupt. */ throw_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual); throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc)); if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual)) { /* MB with corrupt residuals or corrupt mode/motion vectors. * Better to use the predictor as reconstruction. */ pbi->frame_corrupt_residual = 1; memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); corruption_detected = 1; /* force idct to be skipped for B_PRED and use the * prediction only for reconstruction * */ memset(xd->eobs, 0, 25); } } #endif /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv_s( xd, xd->recon_above[1], xd->recon_above[2], xd->recon_left[1], xd->recon_left[2], xd->recon_left_stride[1], xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride); if (mode != B_PRED) { vp8_build_intra_predictors_mby_s( xd, xd->recon_above[0], xd->recon_left[0], xd->recon_left_stride[0], xd->dst.y_buffer, xd->dst.y_stride); } else { short *DQC = xd->dequant_y1; int dst_stride = xd->dst.y_stride; /* clear out residual eob info */ if (xd->mode_info_context->mbmi.mb_skip_coeff) memset(xd->eobs, 0, 25); intra_prediction_down_copy(xd, xd->recon_above[0] + 16); for (i = 0; i < 16; ++i) { BLOCKD *b = &xd->block[i]; unsigned char *dst = xd->dst.y_buffer + b->offset; B_PREDICTION_MODE b_mode = xd->mode_info_context->bmi[i].as_mode; unsigned char *Above; unsigned char *yleft; int left_stride; unsigned char top_left; /*Caution: For some b_mode, it needs 8 pixels (4 above + 4 * above-right).*/ if (i < 4 && pbi->common.filter_level) { Above = xd->recon_above[0] + b->offset; } else { Above = dst - dst_stride; } if (i % 4 == 0 && pbi->common.filter_level) { yleft = xd->recon_left[0] + i; left_stride = 1; } else { yleft = dst - 1; left_stride = dst_stride; } if ((i == 4 || i == 8 || i == 12) && pbi->common.filter_level) { top_left = *(xd->recon_left[0] + i - 1); } else { top_left = Above[-1]; } vp8_intra4x4_predict(Above, yleft, left_stride, b_mode, dst, dst_stride, top_left); if (xd->eobs[i]) { if (xd->eobs[i] > 1) { vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride); } else { vp8_dc_only_idct_add(b->qcoeff[0] * DQC[0], dst, dst_stride, dst, dst_stride); memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); } } } } } else { vp8_build_inter_predictors_mb(xd); } #if CONFIG_ERROR_CONCEALMENT if (corruption_detected) { return; } #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) { /* dequantization and idct */ if (mode != B_PRED) { short *DQC = xd->dequant_y1; if (mode != SPLITMV) { BLOCKD *b = &xd->block[24]; /* do 2nd order transform on the dc block */ if (xd->eobs[24] > 1) { vp8_dequantize_b(b, xd->dequant_y2); vp8_short_inv_walsh4x4(&b->dqcoeff[0], xd->qcoeff); memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0])); } else { b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0]; vp8_short_inv_walsh4x4_1(&b->dqcoeff[0], xd->qcoeff); memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); } /* override the dc dequant constant in order to preserve the * dc components */ DQC = xd->dequant_y1_dc; } vp8_dequant_idct_add_y_block(xd->qcoeff, DQC, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); } vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } static void mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd, int start_mb_row) { const vpx_atomic_int *last_row_current_mb_col; vpx_atomic_int *current_mb_col; int mb_row; VP8_COMMON *pc = &pbi->common; const int nsync = pbi->sync_range; const vpx_atomic_int first_row_no_sync_above = VPX_ATOMIC_INIT(pc->mb_cols + nsync); int num_part = 1 << pbi->common.multi_token_partition; int last_mb_row = start_mb_row; YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; YV12_BUFFER_CONFIG *yv12_fb_lst = pbi->dec_fb_ref[LAST_FRAME]; int recon_y_stride = yv12_fb_new->y_stride; int recon_uv_stride = yv12_fb_new->uv_stride; unsigned char *ref_buffer[MAX_REF_FRAMES][3]; unsigned char *dst_buffer[3]; int i; int ref_fb_corrupted[MAX_REF_FRAMES]; ref_fb_corrupted[INTRA_FRAME] = 0; for (i = 1; i < MAX_REF_FRAMES; ++i) { YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i]; ref_buffer[i][0] = this_fb->y_buffer; ref_buffer[i][1] = this_fb->u_buffer; ref_buffer[i][2] = this_fb->v_buffer; ref_fb_corrupted[i] = this_fb->corrupted; } dst_buffer[0] = yv12_fb_new->y_buffer; dst_buffer[1] = yv12_fb_new->u_buffer; dst_buffer[2] = yv12_fb_new->v_buffer; xd->up_available = (start_mb_row != 0); xd->mode_info_context = pc->mi + pc->mode_info_stride * start_mb_row; xd->mode_info_stride = pc->mode_info_stride; for (mb_row = start_mb_row; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { int recon_yoffset, recon_uvoffset; int mb_col; int filter_level; loop_filter_info_n *lfi_n = &pc->lf_info; /* save last row processed by this thread */ last_mb_row = mb_row; /* select bool coder for current partition */ xd->current_bc = &pbi->mbc[mb_row % num_part]; if (mb_row > 0) { last_row_current_mb_col = &pbi->mt_current_mb_col[mb_row - 1]; } else { last_row_current_mb_col = &first_row_no_sync_above; } current_mb_col = &pbi->mt_current_mb_col[mb_row]; recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; /* reset contexts */ xd->above_context = pc->above_context; memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); xd->left_available = 0; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; if (pbi->common.filter_level) { xd->recon_above[0] = pbi->mt_yabove_row[mb_row] + 0 * 16 + 32; xd->recon_above[1] = pbi->mt_uabove_row[mb_row] + 0 * 8 + 16; xd->recon_above[2] = pbi->mt_vabove_row[mb_row] + 0 * 8 + 16; xd->recon_left[0] = pbi->mt_yleft_col[mb_row]; xd->recon_left[1] = pbi->mt_uleft_col[mb_row]; xd->recon_left[2] = pbi->mt_vleft_col[mb_row]; /* TODO: move to outside row loop */ xd->recon_left_stride[0] = 1; xd->recon_left_stride[1] = 1; } else { xd->recon_above[0] = dst_buffer[0] + recon_yoffset; xd->recon_above[1] = dst_buffer[1] + recon_uvoffset; xd->recon_above[2] = dst_buffer[2] + recon_uvoffset; xd->recon_left[0] = xd->recon_above[0] - 1; xd->recon_left[1] = xd->recon_above[1] - 1; xd->recon_left[2] = xd->recon_above[2] - 1; xd->recon_above[0] -= xd->dst.y_stride; xd->recon_above[1] -= xd->dst.uv_stride; xd->recon_above[2] -= xd->dst.uv_stride; /* TODO: move to outside row loop */ xd->recon_left_stride[0] = xd->dst.y_stride; xd->recon_left_stride[1] = xd->dst.uv_stride; setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1], xd->recon_left[2], xd->dst.y_stride, xd->dst.uv_stride); } for (mb_col = 0; mb_col < pc->mb_cols; ++mb_col) { if (((mb_col - 1) % nsync) == 0) { vpx_atomic_store_release(current_mb_col, mb_col - 1); } if (mb_row && !(mb_col & (nsync - 1))) { vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync); } /* Distance of MB to the various image edges. * These are specified to 8th pel as they are always * compared to values that are in 1/8th pel units. */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; #if CONFIG_ERROR_CONCEALMENT { int corrupt_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual) || vp8dx_bool_error(xd->current_bc); if (pbi->ec_active && (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && corrupt_residual) { /* We have an intra block with corrupt * coefficients, better to conceal with an inter * block. * Interpolate MVs from neighboring MBs * * Note that for the first mb with corrupt * residual in a frame, we might not discover * that before decoding the residual. That * happens after this check, and therefore no * inter concealment will be done. */ vp8_interpolate_motion(xd, mb_row, mb_col, pc->mb_rows, pc->mb_cols); } } #endif xd->dst.y_buffer = dst_buffer[0] + recon_yoffset; xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset; xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset; /* propagate errors from reference frames */ xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame]; if (xd->corrupted) { // Move current decoding marcoblock to the end of row for all rows // assigned to this thread, such that other threads won't be waiting. for (; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { current_mb_col = &pbi->mt_current_mb_col[mb_row]; vpx_atomic_store_release(current_mb_col, pc->mb_cols + nsync); } vpx_internal_error(&xd->error_info, VPX_CODEC_CORRUPT_FRAME, "Corrupted reference frame"); } if (xd->mode_info_context->mbmi.ref_frame >= LAST_FRAME) { const MV_REFERENCE_FRAME ref = xd->mode_info_context->mbmi.ref_frame; xd->pre.y_buffer = ref_buffer[ref][0] + recon_yoffset; xd->pre.u_buffer = ref_buffer[ref][1] + recon_uvoffset; xd->pre.v_buffer = ref_buffer[ref][2] + recon_uvoffset; } else { // ref_frame is INTRA_FRAME, pre buffer should not be used. xd->pre.y_buffer = 0; xd->pre.u_buffer = 0; xd->pre.v_buffer = 0; } mt_decode_macroblock(pbi, xd, 0); xd->left_available = 1; /* check if the boolean decoder has suffered an error */ xd->corrupted |= vp8dx_bool_error(xd->current_bc); xd->recon_above[0] += 16; xd->recon_above[1] += 8; xd->recon_above[2] += 8; if (!pbi->common.filter_level) { xd->recon_left[0] += 16; xd->recon_left[1] += 8; xd->recon_left[2] += 8; } if (pbi->common.filter_level) { int skip_lf = (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV && xd->mode_info_context->mbmi.mb_skip_coeff); const int mode_index = lfi_n->mode_lf_lut[xd->mode_info_context->mbmi.mode]; const int seg = xd->mode_info_context->mbmi.segment_id; const int ref_frame = xd->mode_info_context->mbmi.ref_frame; filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; if (mb_row != pc->mb_rows - 1) { /* Save decoded MB last row data for next-row decoding */ memcpy((pbi->mt_yabove_row[mb_row + 1] + 32 + mb_col * 16), (xd->dst.y_buffer + 15 * recon_y_stride), 16); memcpy((pbi->mt_uabove_row[mb_row + 1] + 16 + mb_col * 8), (xd->dst.u_buffer + 7 * recon_uv_stride), 8); memcpy((pbi->mt_vabove_row[mb_row + 1] + 16 + mb_col * 8), (xd->dst.v_buffer + 7 * recon_uv_stride), 8); } /* save left_col for next MB decoding */ if (mb_col != pc->mb_cols - 1) { MODE_INFO *next = xd->mode_info_context + 1; if (next->mbmi.ref_frame == INTRA_FRAME) { for (i = 0; i < 16; ++i) { pbi->mt_yleft_col[mb_row][i] = xd->dst.y_buffer[i * recon_y_stride + 15]; } for (i = 0; i < 8; ++i) { pbi->mt_uleft_col[mb_row][i] = xd->dst.u_buffer[i * recon_uv_stride + 7]; pbi->mt_vleft_col[mb_row][i] = xd->dst.v_buffer[i * recon_uv_stride + 7]; } } } /* loopfilter on this macroblock. */ if (filter_level) { if (pc->filter_type == NORMAL_LOOPFILTER) { loop_filter_info lfi; FRAME_TYPE frame_type = pc->frame_type; const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; lfi.mblim = lfi_n->mblim[filter_level]; lfi.blim = lfi_n->blim[filter_level]; lfi.lim = lfi_n->lim[filter_level]; lfi.hev_thr = lfi_n->hev_thr[hev_index]; if (mb_col > 0) vp8_loop_filter_mbv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi); if (!skip_lf) vp8_loop_filter_bv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi); /* don't apply across umv border */ if (mb_row > 0) vp8_loop_filter_mbh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi); if (!skip_lf) vp8_loop_filter_bh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi); } else { if (mb_col > 0) vp8_loop_filter_simple_mbv(xd->dst.y_buffer, recon_y_stride, lfi_n->mblim[filter_level]); if (!skip_lf) vp8_loop_filter_simple_bv(xd->dst.y_buffer, recon_y_stride, lfi_n->blim[filter_level]); /* don't apply across umv border */ if (mb_row > 0) vp8_loop_filter_simple_mbh(xd->dst.y_buffer, recon_y_stride, lfi_n->mblim[filter_level]); if (!skip_lf) vp8_loop_filter_simple_bh(xd->dst.y_buffer, recon_y_stride, lfi_n->blim[filter_level]); } } } recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; } /* adjust to the next row of mbs */ if (pbi->common.filter_level) { if (mb_row != pc->mb_rows - 1) { int lasty = yv12_fb_lst->y_width + VP8BORDERINPIXELS; int lastuv = (yv12_fb_lst->y_width >> 1) + (VP8BORDERINPIXELS >> 1); for (i = 0; i < 4; ++i) { pbi->mt_yabove_row[mb_row + 1][lasty + i] = pbi->mt_yabove_row[mb_row + 1][lasty - 1]; pbi->mt_uabove_row[mb_row + 1][lastuv + i] = pbi->mt_uabove_row[mb_row + 1][lastuv - 1]; pbi->mt_vabove_row[mb_row + 1][lastuv + i] = pbi->mt_vabove_row[mb_row + 1][lastuv - 1]; } } } else { vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); } /* last MB of row is ready just after extension is done */ vpx_atomic_store_release(current_mb_col, mb_col + nsync); ++xd->mode_info_context; /* skip prediction column */ xd->up_available = 1; /* since we have multithread */ xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; } /* signal end of decoding of current thread for current frame */ if (last_mb_row + (int)pbi->decoding_thread_count + 1 >= pc->mb_rows) sem_post(&pbi->h_event_end_decoding); } static THREAD_FUNCTION thread_decoding_proc(void *p_data) { int ithread = ((DECODETHREAD_DATA *)p_data)->ithread; VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1); MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2); ENTROPY_CONTEXT_PLANES mb_row_left_context; while (1) { if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) == 0) break; if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0) { if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) == 0) { break; } else { MACROBLOCKD *xd = &mbrd->mbd; xd->left_context = &mb_row_left_context; if (setjmp(xd->error_info.jmp)) { xd->error_info.setjmp = 0; // Signal the end of decoding for current thread. sem_post(&pbi->h_event_end_decoding); continue; } xd->error_info.setjmp = 1; mt_decode_mb_rows(pbi, xd, ithread + 1); } } } return 0; } void vp8_decoder_create_threads(VP8D_COMP *pbi) { int core_count = 0; unsigned int ithread; vpx_atomic_init(&pbi->b_multithreaded_rd, 0); pbi->allocated_decoding_thread_count = 0; /* limit decoding threads to the max number of token partitions */ core_count = (pbi->max_threads > 8) ? 8 : pbi->max_threads; /* limit decoding threads to the available cores */ if (core_count > pbi->common.processor_core_count) { core_count = pbi->common.processor_core_count; } if (core_count > 1) { vpx_atomic_init(&pbi->b_multithreaded_rd, 1); pbi->decoding_thread_count = core_count - 1; CALLOC_ARRAY(pbi->h_decoding_thread, pbi->decoding_thread_count); CALLOC_ARRAY(pbi->h_event_start_decoding, pbi->decoding_thread_count); CALLOC_ARRAY_ALIGNED(pbi->mb_row_di, pbi->decoding_thread_count, 32); CALLOC_ARRAY(pbi->de_thread_data, pbi->decoding_thread_count); if (sem_init(&pbi->h_event_end_decoding, 0, 0)) { vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, "Failed to initialize semaphore"); } for (ithread = 0; ithread < pbi->decoding_thread_count; ++ithread) { if (sem_init(&pbi->h_event_start_decoding[ithread], 0, 0)) break; vp8_setup_block_dptrs(&pbi->mb_row_di[ithread].mbd); pbi->de_thread_data[ithread].ithread = ithread; pbi->de_thread_data[ithread].ptr1 = (void *)pbi; pbi->de_thread_data[ithread].ptr2 = (void *)&pbi->mb_row_di[ithread]; if (pthread_create(&pbi->h_decoding_thread[ithread], 0, thread_decoding_proc, &pbi->de_thread_data[ithread])) { sem_destroy(&pbi->h_event_start_decoding[ithread]); break; } } pbi->allocated_decoding_thread_count = ithread; if (pbi->allocated_decoding_thread_count != (int)pbi->decoding_thread_count) { /* the remainder of cleanup cases will be handled in * vp8_decoder_remove_threads(). */ if (pbi->allocated_decoding_thread_count == 0) { sem_destroy(&pbi->h_event_end_decoding); } vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, "Failed to create threads"); } } } void vp8mt_de_alloc_temp_buffers(VP8D_COMP *pbi, int mb_rows) { int i; vpx_free(pbi->mt_current_mb_col); pbi->mt_current_mb_col = NULL; /* Free above_row buffers. */ if (pbi->mt_yabove_row) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_yabove_row[i]); pbi->mt_yabove_row[i] = NULL; } vpx_free(pbi->mt_yabove_row); pbi->mt_yabove_row = NULL; } if (pbi->mt_uabove_row) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_uabove_row[i]); pbi->mt_uabove_row[i] = NULL; } vpx_free(pbi->mt_uabove_row); pbi->mt_uabove_row = NULL; } if (pbi->mt_vabove_row) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_vabove_row[i]); pbi->mt_vabove_row[i] = NULL; } vpx_free(pbi->mt_vabove_row); pbi->mt_vabove_row = NULL; } /* Free left_col buffers. */ if (pbi->mt_yleft_col) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_yleft_col[i]); pbi->mt_yleft_col[i] = NULL; } vpx_free(pbi->mt_yleft_col); pbi->mt_yleft_col = NULL; } if (pbi->mt_uleft_col) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_uleft_col[i]); pbi->mt_uleft_col[i] = NULL; } vpx_free(pbi->mt_uleft_col); pbi->mt_uleft_col = NULL; } if (pbi->mt_vleft_col) { for (i = 0; i < mb_rows; ++i) { vpx_free(pbi->mt_vleft_col[i]); pbi->mt_vleft_col[i] = NULL; } vpx_free(pbi->mt_vleft_col); pbi->mt_vleft_col = NULL; } } void vp8mt_alloc_temp_buffers(VP8D_COMP *pbi, int width, int prev_mb_rows) { VP8_COMMON *const pc = &pbi->common; int i; int uv_width; if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd)) { vp8mt_de_alloc_temp_buffers(pbi, prev_mb_rows); /* our internal buffers are always multiples of 16 */ if ((width & 0xf) != 0) width += 16 - (width & 0xf); if (width < 640) { pbi->sync_range = 1; } else if (width <= 1280) { pbi->sync_range = 8; } else if (width <= 2560) { pbi->sync_range = 16; } else { pbi->sync_range = 32; } uv_width = width >> 1; /* Allocate a vpx_atomic_int for each mb row. */ CHECK_MEM_ERROR(pbi->mt_current_mb_col, vpx_malloc(sizeof(*pbi->mt_current_mb_col) * pc->mb_rows)); for (i = 0; i < pc->mb_rows; ++i) vpx_atomic_init(&pbi->mt_current_mb_col[i], 0); /* Allocate memory for above_row buffers. */ CALLOC_ARRAY(pbi->mt_yabove_row, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) { CHECK_MEM_ERROR(pbi->mt_yabove_row[i], vpx_memalign(16, sizeof(unsigned char) * (width + (VP8BORDERINPIXELS << 1)))); vp8_zero_array(pbi->mt_yabove_row[i], width + (VP8BORDERINPIXELS << 1)); } CALLOC_ARRAY(pbi->mt_uabove_row, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) { CHECK_MEM_ERROR(pbi->mt_uabove_row[i], vpx_memalign(16, sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS))); vp8_zero_array(pbi->mt_uabove_row[i], uv_width + VP8BORDERINPIXELS); } CALLOC_ARRAY(pbi->mt_vabove_row, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) { CHECK_MEM_ERROR(pbi->mt_vabove_row[i], vpx_memalign(16, sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS))); vp8_zero_array(pbi->mt_vabove_row[i], uv_width + VP8BORDERINPIXELS); } /* Allocate memory for left_col buffers. */ CALLOC_ARRAY(pbi->mt_yleft_col, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) CHECK_MEM_ERROR(pbi->mt_yleft_col[i], vpx_calloc(sizeof(unsigned char) * 16, 1)); CALLOC_ARRAY(pbi->mt_uleft_col, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) CHECK_MEM_ERROR(pbi->mt_uleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1)); CALLOC_ARRAY(pbi->mt_vleft_col, pc->mb_rows); for (i = 0; i < pc->mb_rows; ++i) CHECK_MEM_ERROR(pbi->mt_vleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1)); } } void vp8_decoder_remove_threads(VP8D_COMP *pbi) { /* shutdown MB Decoding thread; */ if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd)) { int i; vpx_atomic_store_release(&pbi->b_multithreaded_rd, 0); /* allow all threads to exit */ for (i = 0; i < pbi->allocated_decoding_thread_count; ++i) { sem_post(&pbi->h_event_start_decoding[i]); pthread_join(pbi->h_decoding_thread[i], NULL); } for (i = 0; i < pbi->allocated_decoding_thread_count; ++i) { sem_destroy(&pbi->h_event_start_decoding[i]); } if (pbi->allocated_decoding_thread_count) { sem_destroy(&pbi->h_event_end_decoding); } vpx_free(pbi->h_decoding_thread); pbi->h_decoding_thread = NULL; vpx_free(pbi->h_event_start_decoding); pbi->h_event_start_decoding = NULL; vpx_free(pbi->mb_row_di); pbi->mb_row_di = NULL; vpx_free(pbi->de_thread_data); pbi->de_thread_data = NULL; vp8mt_de_alloc_temp_buffers(pbi, pbi->common.mb_rows); } } int vp8mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd) { VP8_COMMON *pc = &pbi->common; unsigned int i; int j; int filter_level = pc->filter_level; YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; if (filter_level) { /* Set above_row buffer to 127 for decoding first MB row */ memset(pbi->mt_yabove_row[0] + VP8BORDERINPIXELS - 1, 127, yv12_fb_new->y_width + 5); memset(pbi->mt_uabove_row[0] + (VP8BORDERINPIXELS >> 1) - 1, 127, (yv12_fb_new->y_width >> 1) + 5); memset(pbi->mt_vabove_row[0] + (VP8BORDERINPIXELS >> 1) - 1, 127, (yv12_fb_new->y_width >> 1) + 5); for (j = 1; j < pc->mb_rows; ++j) { memset(pbi->mt_yabove_row[j] + VP8BORDERINPIXELS - 1, (unsigned char)129, 1); memset(pbi->mt_uabove_row[j] + (VP8BORDERINPIXELS >> 1) - 1, (unsigned char)129, 1); memset(pbi->mt_vabove_row[j] + (VP8BORDERINPIXELS >> 1) - 1, (unsigned char)129, 1); } /* Set left_col to 129 initially */ for (j = 0; j < pc->mb_rows; ++j) { memset(pbi->mt_yleft_col[j], (unsigned char)129, 16); memset(pbi->mt_uleft_col[j], (unsigned char)129, 8); memset(pbi->mt_vleft_col[j], (unsigned char)129, 8); } /* Initialize the loop filter for this frame. */ vp8_loop_filter_frame_init(pc, &pbi->mb, filter_level); } else { vp8_setup_intra_recon_top_line(yv12_fb_new); } setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, pbi->decoding_thread_count); for (i = 0; i < pbi->decoding_thread_count; ++i) { sem_post(&pbi->h_event_start_decoding[i]); } if (setjmp(xd->error_info.jmp)) { xd->error_info.setjmp = 0; xd->corrupted = 1; // Wait for other threads to finish. This prevents other threads decoding // the current frame while the main thread starts decoding the next frame, // which causes a data race. for (i = 0; i < pbi->decoding_thread_count; ++i) sem_wait(&pbi->h_event_end_decoding); return -1; } xd->error_info.setjmp = 1; mt_decode_mb_rows(pbi, xd, 0); for (i = 0; i < pbi->decoding_thread_count + 1; ++i) sem_wait(&pbi->h_event_end_decoding); /* add back for each frame */ return 0; }