ref: 2d1a7cd45a4ac7b4bc827fcc915ff3edd3009691
dir: /vp9/decoder/vp9_decodeframe.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <stdlib.h> // qsort() #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_dsp/bitreader_buffer.h" #include "vpx_dsp/bitreader.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/mem_ops.h" #include "vpx_scale/vpx_scale.h" #include "vpx_util/vpx_thread.h" #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "vpx_util/vpx_debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_thread_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/decoder/vp9_decodeframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decoder.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_job_queue.h" #define MAX_VP9_HEADER_SIZE 80 typedef int (*predict_recon_func)(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size); typedef void (*intra_recon_func)(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size); static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return len != 0 && len <= (size_t)(end - start); } static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) { const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vpx_reader *r) { TX_MODE tx_mode = vpx_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r); return tx_mode; } static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 3; ++j) vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 2; ++j) vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 1; ++j) vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm, vpx_reader *r) { if (vp9_compound_reference_allowed(cm)) { return vpx_read_bit(r) ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) : SINGLE_REFERENCE; } else { return SINGLE_REFERENCE; } } static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) { FRAME_CONTEXT *const fc = cm->fc; int i; if (cm->reference_mode == REFERENCE_MODE_SELECT) for (i = 0; i < COMP_INTER_CONTEXTS; ++i) vp9_diff_update_prob(r, &fc->comp_inter_prob[i]); if (cm->reference_mode != COMPOUND_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) { vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]); vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]); } if (cm->reference_mode != SINGLE_REFERENCE) for (i = 0; i < REF_CONTEXTS; ++i) vp9_diff_update_prob(r, &fc->comp_ref_prob[i]); } static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) { int i; for (i = 0; i < n; ++i) if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = pd->dqcoeff; assert(eob > 0); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); if (xd->lossless) { vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd); } else { switch (tx_size) { case TX_4X4: vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd); break; case TX_8X8: vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd); break; case TX_16X16: vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd); break; case TX_32X32: vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd); break; default: assert(0 && "Invalid transform size"); } } } else { if (xd->lossless) { vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break; case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break; case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break; case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } } #else if (xd->lossless) { vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break; case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break; case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break; case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } #endif // CONFIG_VP9_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane, const TX_TYPE tx_type, const TX_SIZE tx_size, uint8_t *dst, int stride, int eob) { struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = pd->dqcoeff; assert(eob > 0); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); if (xd->lossless) { vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd); } else { switch (tx_size) { case TX_4X4: vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); break; case TX_8X8: vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); break; case TX_16X16: vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); break; case TX_32X32: vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd); break; default: assert(0 && "Invalid transform size"); } } } else { if (xd->lossless) { vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } } #else if (xd->lossless) { vp9_iwht4x4_add(dqcoeff, dst, stride, eob); } else { switch (tx_size) { case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(0 && "Invalid transform size"); return; } } #endif // CONFIG_VP9_HIGHBITDEPTH if (eob == 1) { dqcoeff[0] = 0; } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } static void predict_and_reconstruct_intra_block(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size) { MACROBLOCKD *const xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode; uint8_t *dst; dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (mi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, col, row, plane); if (!mi->skip) { const TX_TYPE tx_type = (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode]; const scan_order *sc = (plane || xd->lossless) ? &vp9_default_scan_orders[tx_size] : &vp9_scan_orders[tx_size][tx_type]; const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, mi->segment_id); if (eob > 0) { inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst, pd->dst.stride, eob); } } } static void parse_intra_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size) { MACROBLOCKD *const xd = &twd->xd; PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode; if (mi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; if (!mi->skip) { struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_TYPE tx_type = (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode]; const scan_order *sc = (plane || xd->lossless) ? &vp9_default_scan_orders[tx_size] : &vp9_scan_orders[tx_size][tx_type]; *pd->eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, mi->segment_id); /* Keep the alignment to 16 */ pd->dqcoeff += (16 << (tx_size << 1)); pd->eob++; } } static void predict_and_reconstruct_intra_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size) { MACROBLOCKD *const xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode; uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (mi->sb_type < BLOCK_8X8) if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride, col, row, plane); if (!mi->skip) { const TX_TYPE tx_type = (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode]; if (*pd->eob > 0) { inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst, pd->dst.stride, *pd->eob); } /* Keep the alignment to 16 */ pd->dqcoeff += (16 << (tx_size << 1)); pd->eob++; } } static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size, int mi_row, int mi_col) { MACROBLOCKD *const xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; const scan_order *sc = &vp9_default_scan_orders[tx_size]; const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, mi->segment_id); uint8_t *dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; if (eob > 0) { inverse_transform_block_inter(xd, plane, tx_size, dst, pd->dst.stride, eob); } #if CONFIG_MISMATCH_DEBUG { int pixel_c, pixel_r; int blk_w = 1 << (tx_size + TX_UNIT_SIZE_LOG2); int blk_h = 1 << (tx_size + TX_UNIT_SIZE_LOG2); mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row, pd->subsampling_x, pd->subsampling_y); mismatch_check_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r, blk_w, blk_h, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } #else (void)mi_row; (void)mi_col; #endif return eob; } static int parse_inter_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size) { MACROBLOCKD *const xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; const scan_order *sc = &vp9_default_scan_orders[tx_size]; const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, mi->segment_id); *pd->eob = eob; pd->dqcoeff += (16 << (tx_size << 1)); pd->eob++; return eob; } static int reconstruct_inter_block_row_mt(TileWorkerData *twd, MODE_INFO *const mi, int plane, int row, int col, TX_SIZE tx_size) { MACROBLOCKD *const xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; const int eob = *pd->eob; (void)mi; if (eob > 0) { inverse_transform_block_inter( xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], pd->dst.stride, eob); } pd->dqcoeff += (16 << (tx_size << 1)); pd->eob++; return eob; } static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int x, int y, int b_w, int b_h, int w, int h) { // Get a pointer to the start of the real data for this row. const uint8_t *ref_row = src - x - y * src_stride; if (y >= h) ref_row += (h - 1) * src_stride; else if (y > 0) ref_row += y * src_stride; do { int right = 0, copy; int left = x < 0 ? -x : 0; if (left > b_w) left = b_w; if (x + b_w > w) right = x + b_w - w; if (right > b_w) right = b_w; copy = b_w - left - right; if (left) memset(dst, ref_row[0], left); if (copy) memcpy(dst + left, ref_row + x + left, copy); if (right) memset(dst + left + copy, ref_row[w - 1], right); dst += dst_stride; ++y; if (y > 0 && y < h) ref_row += src_stride; } while (--b_h); } #if CONFIG_VP9_HIGHBITDEPTH static void high_build_mc_border(const uint8_t *src8, int src_stride, uint16_t *dst, int dst_stride, int x, int y, int b_w, int b_h, int w, int h) { // Get a pointer to the start of the real data for this row. const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *ref_row = src - x - y * src_stride; if (y >= h) ref_row += (h - 1) * src_stride; else if (y > 0) ref_row += y * src_stride; do { int right = 0, copy; int left = x < 0 ? -x : 0; if (left > b_w) left = b_w; if (x + b_w > w) right = x + b_w - w; if (right > b_w) right = b_w; copy = b_w - left - right; if (left) vpx_memset16(dst, ref_row[0], left); if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right); dst += dst_stride; ++y; if (y > 0 && y < h) ref_row += src_stride; } while (--b_h); } #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_VP9_HIGHBITDEPTH static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1, int pre_buf_stride, int x0, int y0, int b_w, int b_h, int frame_width, int frame_height, int border_offset, uint8_t *const dst, int dst_buf_stride, int subpel_x, int subpel_y, const InterpKernel *kernel, const struct scale_factors *sf, MACROBLOCKD *xd, int w, int h, int ref, int xs, int ys) { uint16_t *mc_buf_high = twd->extend_and_predict_buf; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0, b_w, b_h, frame_width, frame_height); highbd_inter_predictor(mc_buf_high + border_offset, b_w, CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); } else { build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0, y0, b_w, b_h, frame_width, frame_height); inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } } #else static void extend_and_predict(TileWorkerData *twd, const uint8_t *buf_ptr1, int pre_buf_stride, int x0, int y0, int b_w, int b_h, int frame_width, int frame_height, int border_offset, uint8_t *const dst, int dst_buf_stride, int subpel_x, int subpel_y, const InterpKernel *kernel, const struct scale_factors *sf, int w, int h, int ref, int xs, int ys) { uint8_t *mc_buf = (uint8_t *)twd->extend_and_predict_buf; const uint8_t *buf_ptr; build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h, frame_width, frame_height); buf_ptr = mc_buf + border_offset; inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } #endif // CONFIG_VP9_HIGHBITDEPTH static void dec_build_inter_predictors( TileWorkerData *twd, MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, const InterpKernel *kernel, const struct scale_factors *sf, struct buf_2d *pre_buf, struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf, int is_scaled, int ref) { struct macroblockd_plane *const pd = &xd->plane[plane]; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; MV32 scaled_mv; int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride, subpel_x, subpel_y; uint8_t *ref_frame, *buf_ptr; // Get reference frame pointer, width and height. if (plane == 0) { frame_width = ref_frame_buf->buf.y_crop_width; frame_height = ref_frame_buf->buf.y_crop_height; ref_frame = ref_frame_buf->buf.y_buffer; } else { frame_width = ref_frame_buf->buf.uv_crop_width; frame_height = ref_frame_buf->buf.uv_crop_height; ref_frame = plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer; } if (is_scaled) { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y); // Co-ordinate of containing block to pixel precision. int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); #if 0 // CONFIG_BETTER_HW_COMPATIBILITY assert(xd->mi[0]->sb_type != BLOCK_4X8 && xd->mi[0]->sb_type != BLOCK_8X4); assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) && mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x))); #endif // Co-ordinate of the block to 1/16th pixel precision. x0_16 = (x_start + x) << SUBPEL_BITS; y0_16 = (y_start + y) << SUBPEL_BITS; // Co-ordinate of current block in reference frame // to 1/16th pixel precision. x0_16 = sf->scale_value_x(x0_16, sf); y0_16 = sf->scale_value_y(y0_16, sf); // Map the top left corner of the block into the reference frame. x0 = sf->scale_value_x(x_start + x, sf); y0 = sf->scale_value_y(y_start + y, sf); // Scale the MV and incorporate the sub-pixel offset of the block // in the reference frame. scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { // Co-ordinate of containing block to pixel precision. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; // Co-ordinate of the block to 1/16th pixel precision. x0_16 = x0 << SUBPEL_BITS; y0_16 = y0 << SUBPEL_BITS; scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y)); scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x)); xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; // Calculate the top left corner of the best matching block in the // reference frame. x0 += scaled_mv.col >> SUBPEL_BITS; y0 += scaled_mv.row >> SUBPEL_BITS; x0_16 += scaled_mv.col; y0_16 += scaled_mv.row; // Get reference block pointer. buf_ptr = ref_frame + y0 * pre_buf->stride + x0; buf_stride = pre_buf->stride; // Do border extension if there is motion or the // width/height is not a multiple of 8 pixels. if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || (frame_height & 0x7)) { int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1; // Get reference block bottom right horizontal coordinate. int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1; int x_pad = 0, y_pad = 0; if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) { x0 -= VP9_INTERP_EXTEND - 1; x1 += VP9_INTERP_EXTEND; x_pad = 1; } if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) { y0 -= VP9_INTERP_EXTEND - 1; y1 += VP9_INTERP_EXTEND; y_pad = 1; } // Skip border extension if block is inside the frame. if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 || y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) { // Extend the border. const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0; const int b_w = x1 - x0 + 1; const int b_h = y1 - y0 + 1; const int border_offset = y_pad * 3 * b_w + x_pad * 3; extend_and_predict(twd, buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width, frame_height, border_offset, dst, dst_buf->stride, subpel_x, subpel_y, kernel, sf, #if CONFIG_VP9_HIGHBITDEPTH xd, #endif w, h, ref, xs, ys); return; } } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride, CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); } else { inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); } #else inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys); #endif // CONFIG_VP9_HIGHBITDEPTH } static void dec_build_inter_predictors_sb(TileWorkerData *twd, VP9Decoder *const pbi, MACROBLOCKD *xd, int mi_row, int mi_col) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const MODE_INFO *mi = xd->mi[0]; const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; const BLOCK_SIZE sb_type = mi->sb_type; const int is_compound = has_second_ref(mi); int ref; int is_scaled; for (ref = 0; ref < 1 + is_compound; ++ref) { const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME]; const struct scale_factors *const sf = &ref_buf->sf; const int idx = ref_buf->idx; BufferPool *const pool = pbi->common.buffer_pool; RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx]; if (!vp9_is_valid_scale(sf)) vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); is_scaled = vp9_is_scaled(sf); vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, is_scaled ? sf : NULL); xd->block_refs[ref] = ref_buf; if (sb_type < BLOCK_8X8) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int n4w_x4 = 4 * num_4x4_w; const int n4h_x4 = 4 * num_4x4_h; struct buf_2d *const pre_buf = &pd->pre[ref]; int i = 0, x, y; for (y = 0; y < num_4x4_h; ++y) { for (x = 0; x < num_4x4_w; ++x) { const MV mv = average_split_mvs(pd, mi, ref, i++); dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 4 * x, 4 * y, 4, 4, mi_x, mi_y, kernel, sf, pre_buf, dst_buf, &mv, ref_frame_buf, is_scaled, ref); } } } } else { const MV mv = mi->mv[ref].as_mv; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int n4w_x4 = 4 * num_4x4_w; const int n4h_x4 = 4 * num_4x4_h; struct buf_2d *const pre_buf = &pd->pre[ref]; dec_build_inter_predictors(twd, xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4, n4h_x4, mi_x, mi_y, kernel, sf, pre_buf, dst_buf, &mv, ref_frame_buf, is_scaled, ref); } } } } static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { struct macroblockd_plane *const pd = &xd->plane[i]; memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); } } static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl, int bhl) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x; xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y; } } static MODE_INFO *set_offsets_recon(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, int bw, int bh, int bwl, int bhl) { const int offset = mi_row * cm->mi_stride + mi_col; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; set_plane_n4(xd, bw, bh, bwl, bhl); set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return xd->mi[0]; } static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, int bh, int x_mis, int y_mis, int bwl, int bhl) { const int offset = mi_row * cm->mi_stride + mi_col; int x, y; const TileInfo *const tile = &xd->tile; xd->mi = cm->mi_grid_visible + offset; xd->mi[0] = &cm->mi[offset]; // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of // passing bsize from decode_partition(). xd->mi[0]->sb_type = bsize; for (y = 0; y < y_mis; ++y) for (x = !y; x < x_mis; ++x) { xd->mi[y * cm->mi_stride + x] = xd->mi[0]; } set_plane_n4(xd, bw, bh, bwl, bhl); set_skip_context(xd, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); return xd->mi[0]; } static INLINE int predict_recon_inter(MACROBLOCKD *xd, MODE_INFO *mi, TileWorkerData *twd, predict_recon_func func) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) eobtotal += func(twd, mi, plane, row, col, tx_size); } return eobtotal; } static INLINE void predict_recon_intra(MACROBLOCKD *xd, MODE_INFO *mi, TileWorkerData *twd, intra_recon_func func) { int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) func(twd, mi, plane, row, col, tx_size); } } static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) { VP9_COMMON *const cm = &pbi->common; const int less8x8 = bsize < BLOCK_8X8; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); vpx_reader *r = &twd->bit_reader; MACROBLOCKD *const xd = &twd->xd; MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); } vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis); if (mi->skip) { dec_reset_skip_context(xd); } if (!is_inter_block(mi)) { int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) predict_and_reconstruct_intra_block(twd, mi, plane, row, col, tx_size); } } else { // Prediction dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col); #if CONFIG_MISMATCH_DEBUG { int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int pixel_c, pixel_r; const BLOCK_SIZE plane_bsize = get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]); const int bw = get_block_width(plane_bsize); const int bh = get_block_height(plane_bsize); mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, pd->subsampling_y); mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c, pixel_r, bw, bh, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } } #endif // Reconstruction if (!mi->skip) { int eobtotal = 0; int plane; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; const int num_4x4_w = pd->n4_w; const int num_4x4_h = pd->n4_h; const int step = (1 << tx_size); int row, col; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; for (row = 0; row < max_blocks_high; row += step) for (col = 0; col < max_blocks_wide; col += step) eobtotal += reconstruct_inter_block(twd, mi, plane, row, col, tx_size, mi_row, mi_col); } if (!less8x8 && eobtotal == 0) mi->skip = 1; // skip loopfilter } } xd->corrupted |= vpx_reader_has_error(r); if (cm->lf.filter_level) { vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh); } } static void recon_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) { VP9_COMMON *const cm = &pbi->common; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); MACROBLOCKD *const xd = &twd->xd; MODE_INFO *mi = set_offsets_recon(cm, xd, mi_row, mi_col, bw, bh, bwl, bhl); if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); } if (!is_inter_block(mi)) { predict_recon_intra(xd, mi, twd, predict_and_reconstruct_intra_block_row_mt); } else { // Prediction dec_build_inter_predictors_sb(twd, pbi, xd, mi_row, mi_col); // Reconstruction if (!mi->skip) { predict_recon_inter(xd, mi, twd, reconstruct_inter_block_row_mt); } } vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh); } static void parse_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) { VP9_COMMON *const cm = &pbi->common; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); vpx_reader *r = &twd->bit_reader; MACROBLOCKD *const xd = &twd->xd; MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl, bhl); if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { const BLOCK_SIZE uv_subsize = ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; if (uv_subsize == BLOCK_INVALID) vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME, "Invalid block size."); } vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis); if (mi->skip) { dec_reset_skip_context(xd); } if (!is_inter_block(mi)) { predict_recon_intra(xd, mi, twd, parse_intra_block_row_mt); } else { if (!mi->skip) { tran_low_t *dqcoeff[MAX_MB_PLANE]; int *eob[MAX_MB_PLANE]; int plane; int eobtotal; // Based on eobtotal and bsize, this may be mi->skip may be set to true // In that case dqcoeff and eob need to be backed up and restored as // recon_block will not increment these pointers for skip cases for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; dqcoeff[plane] = pd->dqcoeff; eob[plane] = pd->eob; } eobtotal = predict_recon_inter(xd, mi, twd, parse_inter_block_row_mt); if (bsize >= BLOCK_8X8 && eobtotal == 0) { mi->skip = 1; // skip loopfilter for (plane = 0; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *pd = &xd->plane[plane]; pd->dqcoeff = dqcoeff[plane]; pd->eob = eob[plane]; } } } } xd->corrupted |= vpx_reader_has_error(r); } static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row, int mi_col, int bsl) { const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = twd->xd.left_seg_context + (mi_row & MI_MASK); int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; // assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row, int mi_col, BLOCK_SIZE subsize, int bw) { PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = twd->xd.left_seg_context + (mi_row & MI_MASK); // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bw); } static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row, int mi_col, int has_rows, int has_cols, int bsl) { const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl); const vpx_prob *const probs = twd->xd.partition_probs[ctx]; FRAME_COUNTS *counts = twd->xd.counts; PARTITION_TYPE p; vpx_reader *r = &twd->bit_reader; if (has_rows && has_cols) p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs); else if (!has_rows && has_cols) p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (counts) ++counts->partition[ctx][p]; return p; } // TODO(slavarnway): eliminate bsize and subsize in future commits static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, int mi_col, BLOCK_SIZE bsize, int n4x4_l2) { VP9_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = 1 << n8x8_l2; const int hbs = num_8x8_wh >> 1; PARTITION_TYPE partition; BLOCK_SIZE subsize; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; MACROBLOCKD *const xd = &twd->xd; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2); subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); if (!hbs) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1); } else { switch (partition) { case PARTITION_NONE: decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2); break; case PARTITION_HORZ: decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2); if (has_rows) decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2, n8x8_l2); break; case PARTITION_VERT: decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2); if (has_cols) decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2, n4x4_l2); break; case PARTITION_SPLIT: decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2); decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2); decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2); decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize, n8x8_l2); break; default: assert(0 && "Invalid partition type"); } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh); } static void process_partition(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, int mi_col, BLOCK_SIZE bsize, int n4x4_l2, int parse_recon_flag, process_block_fn_t process_block) { VP9_COMMON *const cm = &pbi->common; const int n8x8_l2 = n4x4_l2 - 1; const int num_8x8_wh = 1 << n8x8_l2; const int hbs = num_8x8_wh >> 1; PARTITION_TYPE partition; BLOCK_SIZE subsize; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; MACROBLOCKD *const xd = &twd->xd; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (parse_recon_flag & PARSE) { *xd->partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2); } partition = *xd->partition; xd->partition++; subsize = get_subsize(bsize, partition); if (!hbs) { // calculate bmode block dimensions (log 2) xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); process_block(twd, pbi, mi_row, mi_col, subsize, 1, 1); } else { switch (partition) { case PARTITION_NONE: process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2); break; case PARTITION_HORZ: process_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2); if (has_rows) process_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2, n8x8_l2); break; case PARTITION_VERT: process_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2); if (has_cols) process_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2, n4x4_l2); break; case PARTITION_SPLIT: process_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, parse_recon_flag, process_block); process_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2, parse_recon_flag, process_block); process_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2, parse_recon_flag, process_block); process_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize, n8x8_l2, parse_recon_flag, process_block); break; default: assert(0 && "Invalid partition type"); } } if (parse_recon_flag & PARSE) { // update partition context if ((bsize == BLOCK_8X8 || partition != PARTITION_SPLIT) && bsize >= BLOCK_8X8) dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh); } } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct vpx_internal_error_info *error_info, vpx_reader *r, vpx_decrypt_cb decrypt_cb, void *decrypt_state) { // Validate the calculated partition length. If the buffer described by the // partition can't be fully read then throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, vpx_reader *r) { int i, j, k, l, m; if (vpx_read_bit(r)) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) for (m = 0; m < UNCONSTRAINED_NODES; ++m) vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); } static void setup_segmentation(struct segmentation *seg, struct vpx_read_bit_buffer *rb) { int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = vpx_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update seg->update_map = vpx_rb_read_bit(rb); if (seg->update_map) { for (i = 0; i < SEG_TREE_PROBS; i++) seg->tree_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; seg->temporal_update = vpx_rb_read_bit(rb); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; } } // Segmentation data update seg->update_data = vpx_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = vpx_rb_read_bit(rb); vp9_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vpx_rb_read_bit(rb); if (feature_enabled) { vp9_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vpx_rb_read_bit(rb) ? -data : data; } vp9_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(struct loopfilter *lf, struct vpx_read_bit_buffer *rb) { lf->filter_level = vpx_rb_read_literal(rb, 6); lf->sharpness_level = vpx_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = vpx_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) if (vpx_rb_read_bit(rb)) lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (vpx_rb_read_bit(rb)) lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6); } } } static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) { return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0; } static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, struct vpx_read_bit_buffer *rb) { cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS); cm->y_dc_delta_q = read_delta_q(rb); cm->uv_dc_delta_q = read_delta_q(rb); cm->uv_ac_delta_q = read_delta_q(rb); cm->dequant_bit_depth = cm->bit_depth; xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; #if CONFIG_VP9_HIGHBITDEPTH xd->bd = (int)cm->bit_depth; #endif } static void setup_segmentation_dequant(VP9_COMMON *const cm) { // Build y/uv dequant values based on segmentation. if (cm->seg.enabled) { int i; for (i = 0; i < MAX_SEGMENTS; ++i) { const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex); cm->y_dequant[i][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[i][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[i][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); } } else { const int qindex = cm->base_qindex; // When segmentation is disabled, only the first value is used. The // remaining are don't cares. cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); cm->uv_dequant[0][0] = vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); cm->uv_dequant[0][1] = vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); } } static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) { const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }; return vpx_rb_read_bit(rb) ? SWITCHABLE : literal_to_filter[vpx_rb_read_literal(rb, 2)]; } static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { cm->render_width = cm->width; cm->render_height = cm->height; if (vpx_rb_read_bit(rb)) vp9_read_frame_size(rb, &cm->render_width, &cm->render_height); } static void resize_mv_buffer(VP9_COMMON *cm) { vpx_free(cm->cur_frame->mvs); cm->cur_frame->mi_rows = cm->mi_rows; cm->cur_frame->mi_cols = cm->mi_cols; CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cm->cur_frame->mvs))); } static void resize_context_buffers(VP9_COMMON *cm, int width, int height) { #if CONFIG_SIZE_LIMIT if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Dimensions of %dx%d beyond allowed size of %dx%d.", width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); #endif if (cm->width != width || cm->height != height) { const int new_mi_rows = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; const int new_mi_cols = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; // Allocations in vp9_alloc_context_buffers() depend on individual // dimensions as well as the overall size. if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { if (vp9_alloc_context_buffers(cm, width, height)) { // The cm->mi_* values have been cleared and any existing context // buffers have been freed. Clear cm->width and cm->height to be // consistent and to force a realloc next time. cm->width = 0; cm->height = 0; vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate context buffers"); } } else { vp9_set_mb_mi(cm, width, height); } vp9_init_context_buffers(cm); cm->width = width; cm->height = height; } if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || cm->mi_cols > cm->cur_frame->mi_cols) { resize_mv_buffer(cm); } } static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { int width, height; BufferPool *const pool = cm->buffer_pool; vp9_read_frame_size(rb, &width, &height); resize_context_buffers(cm, width, height); setup_render_size(cm, rb); if (vpx_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } pool->frame_bufs[cm->new_fb_idx].released = 0; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth, int ref_xss, int ref_yss, vpx_bit_depth_t this_bit_depth, int this_xss, int this_yss) { return ref_bit_depth == this_bit_depth && ref_xss == this_xss && ref_yss == this_yss; } static void setup_frame_size_with_refs(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { int width, height; int found = 0, i; int has_valid_ref_frame = 0; BufferPool *const pool = cm->buffer_pool; for (i = 0; i < REFS_PER_FRAME; ++i) { if (vpx_rb_read_bit(rb)) { if (cm->frame_refs[i].idx != INVALID_IDX) { YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; width = buf->y_crop_width; height = buf->y_crop_height; found = 1; break; } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Failed to decode frame size"); } } } if (!found) vp9_read_frame_size(rb, &width, &height); if (width <= 0 || height <= 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame size"); // Check to make sure at least one of frames that this frame references // has valid dimensions. for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; has_valid_ref_frame |= (ref_frame->idx != INVALID_IDX && valid_ref_frame_size(ref_frame->buf->y_crop_width, ref_frame->buf->y_crop_height, width, height)); } if (!has_valid_ref_frame) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has invalid size"); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_frame = &cm->frame_refs[i]; if (ref_frame->idx == INVALID_IDX || !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, ref_frame->buf->subsampling_x, ref_frame->buf->subsampling_y, cm->bit_depth, cm->subsampling_x, cm->subsampling_y)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame has incompatible color format"); } resize_context_buffers(cm, width, height); setup_render_size(cm, rb); if (vpx_realloc_frame_buffer( get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth, #endif VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } pool->frame_bufs[cm->new_fb_idx].released = 0; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; } static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { int min_log2_tile_cols, max_log2_tile_cols, max_ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++; if (cm->log2_tile_cols > 6) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid number of tile columns"); // rows cm->log2_tile_rows = vpx_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb); } // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static void get_tile_buffer(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data, vpx_decrypt_cb decrypt_cb, void *decrypt_state, TileBuffer *buf) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (decrypt_cb) { uint8_t be_data[4]; decrypt_cb(decrypt_state, *data, be_data, 4); size = mem_get_be32(be_data); } else { size = mem_get_be32(*data); } *data += 4; if (size > (size_t)(data_end - *data)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile size"); } else { size = data_end - *data; } buf->data = *data; buf->size = size; *data += size; } static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, int tile_cols, int tile_rows, TileBuffer (*tile_buffers)[1 << 6]) { int r, c; for (r = 0; r < tile_rows; ++r) { for (c = 0; c < tile_cols; ++c) { const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); TileBuffer *const buf = &tile_buffers[r][c]; buf->col = c; get_tile_buffer(data_end, is_last, &pbi->common.error, &data, pbi->decrypt_cb, pbi->decrypt_state, buf); } } } static void map_write(RowMTWorkerData *const row_mt_worker_data, int map_idx, int sync_idx) { #if CONFIG_MULTITHREAD pthread_mutex_lock(&row_mt_worker_data->recon_sync_mutex[sync_idx]); row_mt_worker_data->recon_map[map_idx] = 1; pthread_cond_signal(&row_mt_worker_data->recon_sync_cond[sync_idx]); pthread_mutex_unlock(&row_mt_worker_data->recon_sync_mutex[sync_idx]); #else (void)row_mt_worker_data; (void)map_idx; (void)sync_idx; #endif // CONFIG_MULTITHREAD } static void map_read(RowMTWorkerData *const row_mt_worker_data, int map_idx, int sync_idx) { #if CONFIG_MULTITHREAD volatile int8_t *map = row_mt_worker_data->recon_map + map_idx; pthread_mutex_t *const mutex = &row_mt_worker_data->recon_sync_mutex[sync_idx]; pthread_mutex_lock(mutex); while (!(*map)) { pthread_cond_wait(&row_mt_worker_data->recon_sync_cond[sync_idx], mutex); } pthread_mutex_unlock(mutex); #else (void)row_mt_worker_data; (void)map_idx; (void)sync_idx; #endif // CONFIG_MULTITHREAD } static int lpf_map_write_check(VP9LfSync *lf_sync, int row, int num_tile_cols) { int return_val = 0; #if CONFIG_MULTITHREAD int corrupted; pthread_mutex_lock(lf_sync->lf_mutex); corrupted = lf_sync->corrupted; pthread_mutex_unlock(lf_sync->lf_mutex); if (!corrupted) { pthread_mutex_lock(&lf_sync->recon_done_mutex[row]); lf_sync->num_tiles_done[row] += 1; if (num_tile_cols == lf_sync->num_tiles_done[row]) return_val = 1; pthread_mutex_unlock(&lf_sync->recon_done_mutex[row]); } #else (void)lf_sync; (void)row; (void)num_tile_cols; #endif return return_val; } static void vp9_tile_done(VP9Decoder *pbi) { #if CONFIG_MULTITHREAD int terminate; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; const int all_parse_done = 1 << pbi->common.log2_tile_cols; pthread_mutex_lock(&row_mt_worker_data->recon_done_mutex); row_mt_worker_data->num_tiles_done++; terminate = all_parse_done == row_mt_worker_data->num_tiles_done; pthread_mutex_unlock(&row_mt_worker_data->recon_done_mutex); if (terminate) { vp9_jobq_terminate(&row_mt_worker_data->jobq); } #else (void)pbi; #endif } static void vp9_jobq_alloc(VP9Decoder *pbi) { VP9_COMMON *const cm = &pbi->common; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows); const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2; const int tile_cols = 1 << cm->log2_tile_cols; const size_t jobq_size = (tile_cols * sb_rows * 2 + sb_rows) * sizeof(Job); if (jobq_size > row_mt_worker_data->jobq_size) { vpx_free(row_mt_worker_data->jobq_buf); CHECK_MEM_ERROR(cm, row_mt_worker_data->jobq_buf, vpx_calloc(1, jobq_size)); vp9_jobq_init(&row_mt_worker_data->jobq, row_mt_worker_data->jobq_buf, jobq_size); row_mt_worker_data->jobq_size = jobq_size; } } static void recon_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi, int mi_row, int is_last_row, VP9LfSync *lf_sync, int cur_tile_col) { VP9_COMMON *const cm = &pbi->common; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; const int tile_cols = 1 << cm->log2_tile_cols; const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2; const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; int mi_col_start = tile_data->xd.tile.mi_col_start; int mi_col_end = tile_data->xd.tile.mi_col_end; int mi_col; vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE) { const int c = mi_col >> MI_BLOCK_SIZE_LOG2; int plane; const int sb_num = (cur_sb_row * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c); // Top Dependency if (cur_sb_row) { map_read(row_mt_worker_data, ((cur_sb_row - 1) * sb_cols) + c, ((cur_sb_row - 1) * tile_cols) + cur_tile_col); } for (plane = 0; plane < MAX_MB_PLANE; ++plane) { tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2); tile_data->xd.plane[plane].dqcoeff = row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2); } tile_data->xd.partition = row_mt_worker_data->partition + (sb_num * PARTITIONS_PER_SB); process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, RECON, recon_block); if (cm->lf.filter_level && !cm->skip_loop_filter) { // Queue LPF_JOB int is_lpf_job_ready = 0; if (mi_col + MI_BLOCK_SIZE >= mi_col_end) { // Checks if this row has been decoded in all tiles is_lpf_job_ready = lpf_map_write_check(lf_sync, cur_sb_row, tile_cols); if (is_lpf_job_ready) { Job lpf_job; lpf_job.job_type = LPF_JOB; if (cur_sb_row > 0) { lpf_job.row_num = mi_row - MI_BLOCK_SIZE; vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job, sizeof(lpf_job)); } if (is_last_row) { lpf_job.row_num = mi_row; vp9_jobq_queue(&row_mt_worker_data->jobq, &lpf_job, sizeof(lpf_job)); } } } } map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c, (cur_sb_row * tile_cols) + cur_tile_col); } } static void parse_tile_row(TileWorkerData *tile_data, VP9Decoder *pbi, int mi_row, int cur_tile_col, uint8_t **data_end) { int mi_col; VP9_COMMON *const cm = &pbi->common; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; TileInfo *tile = &tile_data->xd.tile; TileBuffer *const buf = &pbi->tile_buffers[cur_tile_col]; const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); vp9_zero(tile_data->dqcoeff); vp9_tile_init(tile, cm, 0, cur_tile_col); /* Update reader only at the beginning of each row in a tile */ if (mi_row == 0) { setup_token_decoder(buf->data, *data_end, buf->size, &tile_data->error_info, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); } vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); tile_data->xd.error_info = &tile_data->error_info; vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { const int r = mi_row >> MI_BLOCK_SIZE_LOG2; const int c = mi_col >> MI_BLOCK_SIZE_LOG2; int plane; const int sb_num = (r * (aligned_cols >> MI_BLOCK_SIZE_LOG2) + c); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane] + (sb_num << EOBS_PER_SB_LOG2); tile_data->xd.plane[plane].dqcoeff = row_mt_worker_data->dqcoeff[plane] + (sb_num << DQCOEFFS_PER_SB_LOG2); } tile_data->xd.partition = row_mt_worker_data->partition + sb_num * PARTITIONS_PER_SB; process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, PARSE, parse_block); } } static int row_decode_worker_hook(void *arg1, void *arg2) { ThreadData *const thread_data = (ThreadData *)arg1; uint8_t **data_end = (uint8_t **)arg2; VP9Decoder *const pbi = thread_data->pbi; VP9_COMMON *const cm = &pbi->common; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows); const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2; const int tile_cols = 1 << cm->log2_tile_cols; Job job; LFWorkerData *lf_data = thread_data->lf_data; VP9LfSync *lf_sync = thread_data->lf_sync; volatile int corrupted = 0; TileWorkerData *volatile tile_data_recon = NULL; while (!vp9_jobq_dequeue(&row_mt_worker_data->jobq, &job, sizeof(job), 1)) { int mi_col; const int mi_row = job.row_num; if (job.job_type == LPF_JOB) { lf_data->start = mi_row; lf_data->stop = lf_data->start + MI_BLOCK_SIZE; if (cm->lf.filter_level && !cm->skip_loop_filter && mi_row < cm->mi_rows) { vp9_loopfilter_job(lf_data, lf_sync); } } else if (job.job_type == RECON_JOB) { const int cur_sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; const int is_last_row = sb_rows - 1 == cur_sb_row; int mi_col_start, mi_col_end; if (!tile_data_recon) CHECK_MEM_ERROR(cm, tile_data_recon, vpx_memalign(32, sizeof(TileWorkerData))); tile_data_recon->xd = pbi->mb; vp9_tile_init(&tile_data_recon->xd.tile, cm, 0, job.tile_col); vp9_init_macroblockd(cm, &tile_data_recon->xd, tile_data_recon->dqcoeff); mi_col_start = tile_data_recon->xd.tile.mi_col_start; mi_col_end = tile_data_recon->xd.tile.mi_col_end; if (setjmp(tile_data_recon->error_info.jmp)) { const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2; tile_data_recon->error_info.setjmp = 0; corrupted = 1; for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += MI_BLOCK_SIZE) { const int c = mi_col >> MI_BLOCK_SIZE_LOG2; map_write(row_mt_worker_data, (cur_sb_row * sb_cols) + c, (cur_sb_row * tile_cols) + job.tile_col); } if (is_last_row) { vp9_tile_done(pbi); } continue; } tile_data_recon->error_info.setjmp = 1; tile_data_recon->xd.error_info = &tile_data_recon->error_info; recon_tile_row(tile_data_recon, pbi, mi_row, is_last_row, lf_sync, job.tile_col); if (corrupted) vpx_internal_error(&tile_data_recon->error_info, VPX_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); if (is_last_row) { vp9_tile_done(pbi); } } else if (job.job_type == PARSE_JOB) { TileWorkerData *const tile_data = &pbi->tile_worker_data[job.tile_col]; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; corrupted = 1; vp9_tile_done(pbi); continue; } tile_data->xd = pbi->mb; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? 0 : &tile_data->counts; tile_data->error_info.setjmp = 1; parse_tile_row(tile_data, pbi, mi_row, job.tile_col, data_end); corrupted |= tile_data->xd.corrupted; if (corrupted) vpx_internal_error(&tile_data->error_info, VPX_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); /* Queue in the recon_job for this row */ { Job recon_job; recon_job.row_num = mi_row; recon_job.tile_col = job.tile_col; recon_job.job_type = RECON_JOB; vp9_jobq_queue(&row_mt_worker_data->jobq, &recon_job, sizeof(recon_job)); } /* Queue next parse job */ if (mi_row + MI_BLOCK_SIZE < cm->mi_rows) { Job parse_job; parse_job.row_num = mi_row + MI_BLOCK_SIZE; parse_job.tile_col = job.tile_col; parse_job.job_type = PARSE_JOB; vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job, sizeof(parse_job)); } } } vpx_free(tile_data_recon); return !corrupted; } static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; TileBuffer tile_buffers[4][1 << 6]; int tile_row, tile_col; int mi_row, mi_col; TileWorkerData *tile_data = NULL; if (cm->lf.filter_level && !cm->skip_loop_filter && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_memalign(32, sizeof(LFWorkerData))); pbi->lf_worker.hook = vp9_loop_filter_worker; if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Loop filter thread creation failed"); } } if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // Be sure to sync as we might be resuming after a failed frame decode. winterface->sync(&pbi->lf_worker); vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, pbi->mb.plane); } assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_cols); vp9_reset_lfm(cm); get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); // Load all tile information into tile_data. for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? NULL : &cm->counts; vp9_zero(tile_data->dqcoeff); vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); } } for (tile_row = 0; tile_row < tile_rows; ++tile_row) { TileInfo tile; vp9_tile_set_row(&tile, cm, tile_row); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int col = pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; tile_data = pbi->tile_worker_data + tile_cols * tile_row + col; vp9_tile_set_col(&tile, cm, col); vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; mi_col += MI_BLOCK_SIZE) { if (pbi->row_mt == 1) { int plane; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane]; tile_data->xd.plane[plane].dqcoeff = row_mt_worker_data->dqcoeff[plane]; } tile_data->xd.partition = row_mt_worker_data->partition; process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, PARSE, parse_block); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { tile_data->xd.plane[plane].eob = row_mt_worker_data->eob[plane]; tile_data->xd.plane[plane].dqcoeff = row_mt_worker_data->dqcoeff[plane]; } tile_data->xd.partition = row_mt_worker_data->partition; process_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4, RECON, recon_block); } else { decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4); } } pbi->mb.corrupted |= tile_data->xd.corrupted; if (pbi->mb.corrupted) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Failed to decode tile data"); } // Loopfilter one row. if (cm->lf.filter_level && !cm->skip_loop_filter) { const int lf_start = mi_row - MI_BLOCK_SIZE; LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue; winterface->sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = mi_row; if (pbi->max_threads > 1) { winterface->launch(&pbi->lf_worker); } else { winterface->execute(&pbi->lf_worker); } } } } // Loopfilter remaining rows in the frame. if (cm->lf.filter_level && !cm->skip_loop_filter) { LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; winterface->sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; winterface->execute(&pbi->lf_worker); } // Get last tile data. tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1; return vpx_reader_find_end(&tile_data->bit_reader); } static void set_rows_after_error(VP9LfSync *lf_sync, int start_row, int mi_rows, int num_tiles_left, int total_num_tiles) { do { int mi_row; const int aligned_rows = mi_cols_aligned_to_sb(mi_rows); const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2); const int corrupted = 1; for (mi_row = start_row; mi_row < mi_rows; mi_row += MI_BLOCK_SIZE) { const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2); vp9_set_row(lf_sync, total_num_tiles, mi_row >> MI_BLOCK_SIZE_LOG2, is_last_row, corrupted); } /* If there are multiple tiles, the second tile should start marking row * progress from row 0. */ start_row = 0; } while (num_tiles_left--); } // On entry 'tile_data->data_end' points to the end of the input frame, on exit // it is updated to reflect the bitreader position of the final tile column if // present in the tile buffer group or NULL otherwise. static int tile_worker_hook(void *arg1, void *arg2) { TileWorkerData *const tile_data = (TileWorkerData *)arg1; VP9Decoder *const pbi = (VP9Decoder *)arg2; TileInfo *volatile tile = &tile_data->xd.tile; const int final_col = (1 << pbi->common.log2_tile_cols) - 1; const uint8_t *volatile bit_reader_end = NULL; VP9_COMMON *cm = &pbi->common; LFWorkerData *lf_data = tile_data->lf_data; VP9LfSync *lf_sync = tile_data->lf_sync; volatile int mi_row = 0; volatile int n = tile_data->buf_start; tile_data->error_info.setjmp = 1; if (setjmp(tile_data->error_info.jmp)) { tile_data->error_info.setjmp = 0; tile_data->xd.corrupted = 1; tile_data->data_end = NULL; if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) { const int num_tiles_left = tile_data->buf_end - n; const int mi_row_start = mi_row; set_rows_after_error(lf_sync, mi_row_start, cm->mi_rows, num_tiles_left, 1 << cm->log2_tile_cols); } return 0; } tile_data->xd.corrupted = 0; do { int mi_col; const TileBuffer *const buf = pbi->tile_buffers + n; /* Initialize to 0 is safe since we do not deal with streams that have * more than one row of tiles. (So tile->mi_row_start will be 0) */ assert(cm->log2_tile_rows == 0); mi_row = 0; vp9_zero(tile_data->dqcoeff); vp9_tile_init(tile, &pbi->common, 0, buf->col); setup_token_decoder(buf->data, tile_data->data_end, buf->size, &tile_data->error_info, &tile_data->bit_reader, pbi->decrypt_cb, pbi->decrypt_state); vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff); // init resets xd.error_info tile_data->xd.error_info = &tile_data->error_info; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4); } if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) { const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows); const int sb_rows = (aligned_rows >> MI_BLOCK_SIZE_LOG2); const int is_last_row = (sb_rows - 1 == mi_row >> MI_BLOCK_SIZE_LOG2); vp9_set_row(lf_sync, 1 << cm->log2_tile_cols, mi_row >> MI_BLOCK_SIZE_LOG2, is_last_row, tile_data->xd.corrupted); } } if (buf->col == final_col) { bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader); } } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end); if (pbi->lpf_mt_opt && n < tile_data->buf_end && cm->lf.filter_level && !cm->skip_loop_filter) { /* This was not incremented in the tile loop, so increment before tiles left * calculation */ ++n; set_rows_after_error(lf_sync, 0, cm->mi_rows, tile_data->buf_end - n, 1 << cm->log2_tile_cols); } if (pbi->lpf_mt_opt && !tile_data->xd.corrupted && cm->lf.filter_level && !cm->skip_loop_filter) { vp9_loopfilter_rows(lf_data, lf_sync); } tile_data->data_end = bit_reader_end; return !tile_data->xd.corrupted; } // sorts in descending order static int compare_tile_buffers(const void *a, const void *b) { const TileBuffer *const buf_a = (const TileBuffer *)a; const TileBuffer *const buf_b = (const TileBuffer *)b; return (buf_a->size < buf_b->size) - (buf_a->size > buf_b->size); } static INLINE void init_mt(VP9Decoder *pbi) { int n; VP9_COMMON *const cm = &pbi->common; VP9LfSync *lf_row_sync = &pbi->lf_row_sync; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); if (pbi->num_tile_workers == 0) { const int num_threads = pbi->max_threads; CHECK_MEM_ERROR(cm, pbi->tile_workers, vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); for (n = 0; n < num_threads; ++n) { VPxWorker *const worker = &pbi->tile_workers[n]; ++pbi->num_tile_workers; winterface->init(worker); if (n < num_threads - 1 && !winterface->reset(worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Initialize LPF if ((pbi->lpf_mt_opt || pbi->row_mt) && cm->lf.filter_level && !cm->skip_loop_filter) { vp9_lpf_mt_init(lf_row_sync, cm, cm->lf.filter_level, pbi->num_tile_workers); } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. memset(cm->above_context, 0, sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * aligned_mi_cols); vp9_reset_lfm(cm); } static const uint8_t *decode_tiles_row_wise_mt(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; RowMTWorkerData *const row_mt_worker_data = pbi->row_mt_worker_data; const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = pbi->max_threads; int i, n; int col; int corrupted = 0; const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; VP9LfSync *lf_row_sync = &pbi->lf_row_sync; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; memset(row_mt_worker_data->recon_map, 0, sb_rows * sb_cols * sizeof(*row_mt_worker_data->recon_map)); init_mt(pbi); // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { VPxWorker *const worker = &pbi->tile_workers[n]; ThreadData *const thread_data = &pbi->row_mt_worker_data->thread_data[n]; winterface->sync(worker); if (cm->lf.filter_level && !cm->skip_loop_filter) { thread_data->lf_sync = lf_row_sync; thread_data->lf_data = &thread_data->lf_sync->lfdata[n]; vp9_loop_filter_data_reset(thread_data->lf_data, new_fb, cm, pbi->mb.plane); } thread_data->pbi = pbi; worker->hook = row_decode_worker_hook; worker->data1 = thread_data; worker->data2 = (void *)&row_mt_worker_data->data_end; } for (col = 0; col < tile_cols; ++col) { TileWorkerData *const tile_data = &pbi->tile_worker_data[col]; tile_data->xd = pbi->mb; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts; } /* Reset the jobq to start of the jobq buffer */ vp9_jobq_reset(&row_mt_worker_data->jobq); row_mt_worker_data->num_tiles_done = 0; row_mt_worker_data->data_end = NULL; // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, &pbi->tile_buffers); // Initialize thread frame counts. if (!cm->frame_parallel_decoding_mode) { for (col = 0; col < tile_cols; ++col) { TileWorkerData *const tile_data = &pbi->tile_worker_data[col]; vp9_zero(tile_data->counts); } } // queue parse jobs for 0th row of every tile for (col = 0; col < tile_cols; ++col) { Job parse_job; parse_job.row_num = 0; parse_job.tile_col = col; parse_job.job_type = PARSE_JOB; vp9_jobq_queue(&row_mt_worker_data->jobq, &parse_job, sizeof(parse_job)); } for (i = 0; i < num_workers; ++i) { VPxWorker *const worker = &pbi->tile_workers[i]; worker->had_error = 0; if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } for (; n > 0; --n) { VPxWorker *const worker = &pbi->tile_workers[n - 1]; // TODO(jzern): The tile may have specific error data associated with // its vpx_internal_error_info which could be propagated to the main info // in cm. Additionally once the threads have been synced and an error is // detected, there's no point in continuing to decode tiles. corrupted |= !winterface->sync(worker); } pbi->mb.corrupted = corrupted; { /* Set data end */ TileWorkerData *const tile_data = &pbi->tile_worker_data[tile_cols - 1]; row_mt_worker_data->data_end = vpx_reader_find_end(&tile_data->bit_reader); } // Accumulate thread frame counts. if (!cm->frame_parallel_decoding_mode) { for (i = 0; i < tile_cols; ++i) { TileWorkerData *const tile_data = &pbi->tile_worker_data[i]; vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1); } } return row_mt_worker_data->data_end; } static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const cm = &pbi->common; const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); const uint8_t *bit_reader_end = NULL; VP9LfSync *lf_row_sync = &pbi->lf_row_sync; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = VPXMIN(pbi->max_threads, tile_cols); int n; assert(tile_cols <= (1 << 6)); assert(tile_rows == 1); (void)tile_rows; init_mt(pbi); // Reset tile decoding hook for (n = 0; n < num_workers; ++n) { VPxWorker *const worker = &pbi->tile_workers[n]; TileWorkerData *const tile_data = &pbi->tile_worker_data[n + pbi->total_tiles]; winterface->sync(worker); if (pbi->lpf_mt_opt && cm->lf.filter_level && !cm->skip_loop_filter) { tile_data->lf_sync = lf_row_sync; tile_data->lf_data = &tile_data->lf_sync->lfdata[n]; vp9_loop_filter_data_reset(tile_data->lf_data, new_fb, cm, pbi->mb.plane); tile_data->lf_data->y_only = 0; } tile_data->xd = pbi->mb; tile_data->xd.counts = cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts; worker->hook = tile_worker_hook; worker->data1 = tile_data; worker->data2 = pbi; } // Load tile data into tile_buffers get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, &pbi->tile_buffers); // Sort the buffers based on size in descending order. qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]), compare_tile_buffers); if (num_workers == tile_cols) { // Rearrange the tile buffers such that the largest, and // presumably the most difficult, tile will be decoded in the main thread. // This should help minimize the number of instances where the main thread // is waiting for a worker to complete. const TileBuffer largest = pbi->tile_buffers[0]; memmove(pbi->tile_buffers, pbi->tile_buffers + 1, (tile_cols - 1) * sizeof(pbi->tile_buffers[0])); pbi->tile_buffers[tile_cols - 1] = largest; } else { int start = 0, end = tile_cols - 2; TileBuffer tmp; // Interleave the tiles to distribute the load between threads, assuming a // larger tile implies it is more difficult to decode. while (start < end) { tmp = pbi->tile_buffers[start]; pbi->tile_buffers[start] = pbi->tile_buffers[end]; pbi->tile_buffers[end] = tmp; start += 2; end -= 2; } } // Initialize thread frame counts. if (!cm->frame_parallel_decoding_mode) { for (n = 0; n < num_workers; ++n) { TileWorkerData *const tile_data = (TileWorkerData *)pbi->tile_workers[n].data1; vp9_zero(tile_data->counts); } } { const int base = tile_cols / num_workers; const int remain = tile_cols % num_workers; int buf_start = 0; for (n = 0; n < num_workers; ++n) { const int count = base + (remain + n) / num_workers; VPxWorker *const worker = &pbi->tile_workers[n]; TileWorkerData *const tile_data = (TileWorkerData *)worker->data1; tile_data->buf_start = buf_start; tile_data->buf_end = buf_start + count - 1; tile_data->data_end = data_end; buf_start += count; worker->had_error = 0; if (n == num_workers - 1) { assert(tile_data->buf_end == tile_cols - 1); winterface->execute(worker); } else { winterface->launch(worker); } } for (; n > 0; --n) { VPxWorker *const worker = &pbi->tile_workers[n - 1]; TileWorkerData *const tile_data = (TileWorkerData *)worker->data1; // TODO(jzern): The tile may have specific error data associated with // its vpx_internal_error_info which could be propagated to the main info // in cm. Additionally once the threads have been synced and an error is // detected, there's no point in continuing to decode tiles. pbi->mb.corrupted |= !winterface->sync(worker); if (!bit_reader_end) bit_reader_end = tile_data->data_end; } } // Accumulate thread frame counts. if (!cm->frame_parallel_decoding_mode) { for (n = 0; n < num_workers; ++n) { TileWorkerData *const tile_data = (TileWorkerData *)pbi->tile_workers[n].data1; vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1); } } assert(bit_reader_end || pbi->mb.corrupted); return bit_reader_end; } static void error_handler(void *data) { VP9_COMMON *const cm = (VP9_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { if (cm->profile >= PROFILE_2) { cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 1; #endif } else { cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } cm->color_space = vpx_rb_read_literal(rb, 3); if (cm->color_space != VPX_CS_SRGB) { cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { cm->subsampling_x = vpx_rb_read_bit(rb); cm->subsampling_y = vpx_rb_read_bit(rb); if (cm->subsampling_x == 1 && cm->subsampling_y == 1) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:2:0 color not supported in profile 1 or 3"); if (vpx_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { cm->color_range = VPX_CR_FULL_RANGE; if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. // 4:2:2 or 4:4:0 chroma sampling is not allowed. cm->subsampling_y = cm->subsampling_x = 0; if (vpx_rb_read_bit(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Reserved bit set"); } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "4:4:4 color not supported in profile 0 or 2"); } } } static INLINE void flush_all_fb_on_key(VP9_COMMON *cm) { if (cm->frame_type == KEY_FRAME && cm->current_video_frame > 0) { RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; BufferPool *const pool = cm->buffer_pool; int i; for (i = 0; i < FRAME_BUFFERS; ++i) { if (i == cm->new_fb_idx) continue; frame_bufs[i].ref_count = 0; if (!frame_bufs[i].released) { pool->release_fb_cb(pool->cb_priv, &frame_bufs[i].raw_frame_buffer); frame_bufs[i].released = 1; } } } } static size_t read_uncompressed_header(VP9Decoder *pbi, struct vpx_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; int i, mask, ref_index = 0; size_t sz; cm->last_frame_type = cm->frame_type; cm->last_intra_only = cm->intra_only; if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->profile = vp9_read_profile(rb); #if CONFIG_VP9_HIGHBITDEPTH if (cm->profile >= MAX_PROFILES) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #else if (cm->profile >= PROFILE_2) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Unsupported bitstream profile"); #endif cm->show_existing_frame = vpx_rb_read_bit(rb); if (cm->show_existing_frame) { // Show an existing frame directly. const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)]; if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Buffer %d does not contain a decoded frame", frame_to_show); } ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); pbi->refresh_frame_flags = 0; cm->lf.filter_level = 0; cm->show_frame = 1; return 0; } cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb); cm->show_frame = vpx_rb_read_bit(rb); cm->error_resilient_mode = vpx_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); read_bitdepth_colorspace_sampling(cm, rb); pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; for (i = 0; i < REFS_PER_FRAME; ++i) { cm->frame_refs[i].idx = INVALID_IDX; cm->frame_refs[i].buf = NULL; } setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); flush_all_fb_on_key(cm); pbi->need_resync = 0; } } else { cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2); if (cm->intra_only) { if (!vp9_read_sync_code(rb)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); if (cm->profile > PROFILE_0) { read_bitdepth_colorspace_sampling(cm, rb); } else { // NOTE: The intra-only frame header does not include the specification // of either the color format or color sub-sampling in profile 0. VP9 // specifies that the default color format should be YUV 4:2:0 in this // case (normative). cm->color_space = VPX_CS_BT_601; cm->color_range = VPX_CR_STUDIO_RANGE; cm->subsampling_y = cm->subsampling_x = 1; cm->bit_depth = VPX_BITS_8; #if CONFIG_VP9_HIGHBITDEPTH cm->use_highbitdepth = 0; #endif } pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); setup_frame_size(cm, rb); if (pbi->need_resync) { memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); pbi->need_resync = 0; } } else if (pbi->need_resync != 1) { /* Skip if need resync */ pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); for (i = 0; i < REFS_PER_FRAME; ++i) { const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2); const int idx = cm->ref_frame_map[ref]; RefBuffer *const ref_frame = &cm->frame_refs[i]; ref_frame->idx = idx; ref_frame->buf = &frame_bufs[idx].buf; cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb); } setup_frame_size_with_refs(cm, rb); cm->allow_high_precision_mv = vpx_rb_read_bit(rb); cm->interp_filter = read_interp_filter(rb); for (i = 0; i < REFS_PER_FRAME; ++i) { RefBuffer *const ref_buf = &cm->frame_refs[i]; #if CONFIG_VP9_HIGHBITDEPTH vp9_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height, cm->use_highbitdepth); #else vp9_setup_scale_factors_for_frame( &ref_buf->sf, ref_buf->buf->y_crop_width, ref_buf->buf->y_crop_height, cm->width, cm->height); #endif } } } #if CONFIG_VP9_HIGHBITDEPTH get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; #endif get_frame_new_buffer(cm)->color_space = cm->color_space; get_frame_new_buffer(cm)->color_range = cm->color_range; get_frame_new_buffer(cm)->render_width = cm->render_width; get_frame_new_buffer(cm)->render_height = cm->render_height; if (pbi->need_resync) { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Keyframe / intra-only frame required to reset decoder" " state"); } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vpx_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb); if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } // This flag will be overridden by the call to vp9_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); // Generate next_ref_frame_map. for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { if (mask & 1) { cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; ++frame_bufs[cm->new_fb_idx].ref_count; } else { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; } // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; ++ref_index; } for (; ref_index < REF_FRAMES; ++ref_index) { cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; // Current thread holds the reference frame. if (cm->ref_frame_map[ref_index] >= 0) ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; } pbi->hold_ref_buf = 1; if (frame_is_intra_only(cm) || cm->error_resilient_mode) vp9_setup_past_independence(cm); setup_loopfilter(&cm->lf, rb); setup_quantization(cm, &pbi->mb, rb); setup_segmentation(&cm->seg, rb); setup_segmentation_dequant(cm); setup_tile_info(cm, rb); if (pbi->row_mt == 1) { int num_sbs = 1; const int aligned_rows = mi_cols_aligned_to_sb(cm->mi_rows); const int sb_rows = aligned_rows >> MI_BLOCK_SIZE_LOG2; const int num_jobs = sb_rows << cm->log2_tile_cols; if (pbi->row_mt_worker_data == NULL) { CHECK_MEM_ERROR(cm, pbi->row_mt_worker_data, vpx_calloc(1, sizeof(*pbi->row_mt_worker_data))); #if CONFIG_MULTITHREAD pthread_mutex_init(&pbi->row_mt_worker_data->recon_done_mutex, NULL); #endif } if (pbi->max_threads > 1) { const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int sb_cols = aligned_cols >> MI_BLOCK_SIZE_LOG2; num_sbs = sb_cols * sb_rows; } if (num_sbs > pbi->row_mt_worker_data->num_sbs || num_jobs > pbi->row_mt_worker_data->num_jobs) { vp9_dec_free_row_mt_mem(pbi->row_mt_worker_data); vp9_dec_alloc_row_mt_mem(pbi->row_mt_worker_data, cm, num_sbs, pbi->max_threads, num_jobs); } vp9_jobq_alloc(pbi); } sz = vpx_rb_read_literal(rb, 16); if (sz == 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data, size_t partition_size) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = cm->fc; vpx_reader r; int k; if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb, pbi->decrypt_state)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < SKIP_CONTEXTS; ++k) vp9_diff_update_prob(&r, &fc->skip_probs[k]); if (!frame_is_intra_only(cm)) { nmv_context *const nmvc = &fc->nmvc; int i, j; read_inter_mode_probs(fc, &r); if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); cm->reference_mode = read_frame_reference_mode(cm, &r); if (cm->reference_mode != SINGLE_REFERENCE) vp9_setup_compound_reference_mode(cm); read_frame_reference_mode_probs(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); } return vpx_reader_has_error(&r); } static struct vpx_read_bit_buffer *init_read_bit_buffer( VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data, const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) { rb->bit_offset = 0; rb->error_handler = error_handler; rb->error_handler_data = &pbi->common; if (pbi->decrypt_cb) { const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data); pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); rb->bit_buffer = clear_data; rb->bit_buffer_end = clear_data + n; } else { rb->bit_buffer = data; rb->bit_buffer_end = data_end; } return rb; } //------------------------------------------------------------------------------ int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) { return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 && vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 && vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2; } void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width, int *height) { *width = vpx_rb_read_literal(rb, 16) + 1; *height = vpx_rb_read_literal(rb, 16) + 1; } BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) { int profile = vpx_rb_read_bit(rb); profile |= vpx_rb_read_bit(rb) << 1; if (profile > 2) profile += vpx_rb_read_bit(rb); return (BITSTREAM_PROFILE)profile; } void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data, const uint8_t *data_end, const uint8_t **p_data_end) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct vpx_read_bit_buffer rb; int context_updated = 0; uint8_t clear_data[MAX_VP9_HEADER_SIZE]; const size_t first_partition_size = read_uncompressed_header( pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); const int tile_rows = 1 << cm->log2_tile_rows; const int tile_cols = 1 << cm->log2_tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame); #endif #if CONFIG_MISMATCH_DEBUG mismatch_move_frame_idx_r(); #endif xd->cur_buf = new_fb; if (!first_partition_size) { // showing a frame directly *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); return; } data += vpx_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); cm->use_prev_frame_mvs = !cm->error_resilient_mode && cm->width == cm->last_width && cm->height == cm->last_height && !cm->last_intra_only && cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); *cm->fc = cm->frame_contexts[cm->frame_context_idx]; if (!cm->fc->initialized) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Uninitialized entropy context."); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); if (new_fb->corrupted) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data header is corrupted."); if (cm->lf.filter_level && !cm->skip_loop_filter) { vp9_loop_filter_frame_init(cm, cm->lf.filter_level); } if (pbi->tile_worker_data == NULL || (tile_cols * tile_rows) != pbi->total_tiles) { const int num_tile_workers = tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0); const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data); // Ensure tile data offsets will be properly aligned. This may fail on // platforms without DECLARE_ALIGNED(). assert((sizeof(*pbi->tile_worker_data) % 16) == 0); vpx_free(pbi->tile_worker_data); CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size)); pbi->total_tiles = tile_rows * tile_cols; } if (pbi->max_threads > 1 && tile_rows == 1 && (tile_cols > 1 || pbi->row_mt == 1)) { if (pbi->row_mt == 1) { *p_data_end = decode_tiles_row_wise_mt(pbi, data + first_partition_size, data_end); } else { // Multi-threaded tile decoder *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); if (!pbi->lpf_mt_opt) { if (!xd->corrupted) { if (!cm->skip_loop_filter) { // If multiple threads are used to decode tiles, then we use those // threads to do parallel loopfiltering. vp9_loop_filter_frame_mt( new_fb, cm, pbi->mb.plane, cm->lf.filter_level, 0, 0, pbi->tile_workers, pbi->num_tile_workers, &pbi->lf_row_sync); } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } } } } else { *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); } if (!xd->corrupted) { if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } } else { vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Decode failed. Frame data is corrupted."); } // Non frame parallel update frame context here. if (cm->refresh_frame_context && !context_updated) cm->frame_contexts[cm->frame_context_idx] = *cm->fc; }