ref: 3c055612c6b97bbea36767a38b8c5261bf0c839c
dir: /third_party/libyuv/source/cpu_id.cc/
/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/cpu_id.h" #if defined(_MSC_VER) #include <intrin.h> // For __cpuidex() #endif #if !defined(__pnacl__) && !defined(__CLR_VER) && \ !defined(__native_client__) && (defined(_M_IX86) || defined(_M_X64)) && \ defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) #include <immintrin.h> // For _xgetbv() #endif // For ArmCpuCaps() but unittested on all platforms #include <stdio.h> #include <string.h> #ifdef __cplusplus namespace libyuv { extern "C" { #endif // For functions that use the stack and have runtime checks for overflow, // use SAFEBUFFERS to avoid additional check. #if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) && \ !defined(__clang__) #define SAFEBUFFERS __declspec(safebuffers) #else #define SAFEBUFFERS #endif // cpu_info_ variable for SIMD instruction sets detected. LIBYUV_API int cpu_info_ = 0; // TODO(fbarchard): Consider using int for cpuid so casting is not needed. // Low level cpuid for X86. #if (defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ defined(__x86_64__)) && \ !defined(__pnacl__) && !defined(__CLR_VER) LIBYUV_API void CpuId(int info_eax, int info_ecx, int* cpu_info) { #if defined(_MSC_VER) // Visual C version uses intrinsic or inline x86 assembly. #if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) __cpuidex(cpu_info, info_eax, info_ecx); #elif defined(_M_IX86) __asm { mov eax, info_eax mov ecx, info_ecx mov edi, cpu_info cpuid mov [edi], eax mov [edi + 4], ebx mov [edi + 8], ecx mov [edi + 12], edx } #else // Visual C but not x86 if (info_ecx == 0) { __cpuid(cpu_info, info_eax); } else { cpu_info[3] = cpu_info[2] = cpu_info[1] = cpu_info[0] = 0u; } #endif // GCC version uses inline x86 assembly. #else // defined(_MSC_VER) int info_ebx, info_edx; asm volatile( #if defined(__i386__) && defined(__PIC__) // Preserve ebx for fpic 32 bit. "mov %%ebx, %%edi \n" "cpuid \n" "xchg %%edi, %%ebx \n" : "=D"(info_ebx), #else "cpuid \n" : "=b"(info_ebx), #endif // defined( __i386__) && defined(__PIC__) "+a"(info_eax), "+c"(info_ecx), "=d"(info_edx)); cpu_info[0] = info_eax; cpu_info[1] = info_ebx; cpu_info[2] = info_ecx; cpu_info[3] = info_edx; #endif // defined(_MSC_VER) } #else // (defined(_M_IX86) || defined(_M_X64) ... LIBYUV_API void CpuId(int eax, int ecx, int* cpu_info) { (void)eax; (void)ecx; cpu_info[0] = cpu_info[1] = cpu_info[2] = cpu_info[3] = 0; } #endif // For VS2010 and earlier emit can be used: // _asm _emit 0x0f _asm _emit 0x01 _asm _emit 0xd0 // For VS2010 and earlier. // __asm { // xor ecx, ecx // xcr 0 // xgetbv // mov xcr0, eax // } // For VS2013 and earlier 32 bit, the _xgetbv(0) optimizer produces bad code. // https://code.google.com/p/libyuv/issues/detail?id=529 #if defined(_M_IX86) && (_MSC_VER < 1900) #pragma optimize("g", off) #endif #if (defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ defined(__x86_64__)) && \ !defined(__pnacl__) && !defined(__CLR_VER) && !defined(__native_client__) // X86 CPUs have xgetbv to detect OS saves high parts of ymm registers. int GetXCR0() { int xcr0 = 0; #if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) xcr0 = (int)_xgetbv(0); // VS2010 SP1 required. NOLINT #elif defined(__i386__) || defined(__x86_64__) asm(".byte 0x0f, 0x01, 0xd0" : "=a"(xcr0) : "c"(0) : "%edx"); #endif // defined(__i386__) || defined(__x86_64__) return xcr0; } #else // xgetbv unavailable to query for OSSave support. Return 0. #define GetXCR0() 0 #endif // defined(_M_IX86) || defined(_M_X64) .. // Return optimization to previous setting. #if defined(_M_IX86) && (_MSC_VER < 1900) #pragma optimize("g", on) #endif // based on libvpx arm_cpudetect.c // For Arm, but public to allow testing on any CPU LIBYUV_API SAFEBUFFERS int ArmCpuCaps(const char* cpuinfo_name) { char cpuinfo_line[512]; FILE* f = fopen(cpuinfo_name, "r"); if (!f) { // Assume Neon if /proc/cpuinfo is unavailable. // This will occur for Chrome sandbox for Pepper or Render process. return kCpuHasNEON; } while (fgets(cpuinfo_line, sizeof(cpuinfo_line) - 1, f)) { if (memcmp(cpuinfo_line, "Features", 8) == 0) { char* p = strstr(cpuinfo_line, " neon"); if (p && (p[5] == ' ' || p[5] == '\n')) { fclose(f); return kCpuHasNEON; } // aarch64 uses asimd for Neon. p = strstr(cpuinfo_line, " asimd"); if (p) { fclose(f); return kCpuHasNEON; } } } fclose(f); return 0; } // TODO(fbarchard): Consider read_msa_ir(). // TODO(fbarchard): Add unittest. LIBYUV_API SAFEBUFFERS int MipsCpuCaps(const char* cpuinfo_name, const char ase[]) { char cpuinfo_line[512]; FILE* f = fopen(cpuinfo_name, "r"); if (!f) { // ase enabled if /proc/cpuinfo is unavailable. if (strcmp(ase, " msa") == 0) { return kCpuHasMSA; } return 0; } while (fgets(cpuinfo_line, sizeof(cpuinfo_line) - 1, f)) { if (memcmp(cpuinfo_line, "ASEs implemented", 16) == 0) { char* p = strstr(cpuinfo_line, ase); if (p) { fclose(f); if (strcmp(ase, " msa") == 0) { return kCpuHasMSA; } return 0; } } } fclose(f); return 0; } static SAFEBUFFERS int GetCpuFlags(void) { int cpu_info = 0; #if !defined(__pnacl__) && !defined(__CLR_VER) && \ (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \ defined(_M_IX86)) int cpu_info0[4] = {0, 0, 0, 0}; int cpu_info1[4] = {0, 0, 0, 0}; int cpu_info7[4] = {0, 0, 0, 0}; CpuId(0, 0, cpu_info0); CpuId(1, 0, cpu_info1); if (cpu_info0[0] >= 7) { CpuId(7, 0, cpu_info7); } cpu_info = kCpuHasX86 | ((cpu_info1[3] & 0x04000000) ? kCpuHasSSE2 : 0) | ((cpu_info1[2] & 0x00000200) ? kCpuHasSSSE3 : 0) | ((cpu_info1[2] & 0x00080000) ? kCpuHasSSE41 : 0) | ((cpu_info1[2] & 0x00100000) ? kCpuHasSSE42 : 0) | ((cpu_info7[1] & 0x00000200) ? kCpuHasERMS : 0); // AVX requires OS saves YMM registers. if (((cpu_info1[2] & 0x1c000000) == 0x1c000000) && // AVX and OSXSave ((GetXCR0() & 6) == 6)) { // Test OS saves YMM registers cpu_info |= kCpuHasAVX | ((cpu_info7[1] & 0x00000020) ? kCpuHasAVX2 : 0) | ((cpu_info1[2] & 0x00001000) ? kCpuHasFMA3 : 0) | ((cpu_info1[2] & 0x20000000) ? kCpuHasF16C : 0); // Detect AVX512bw if ((GetXCR0() & 0xe0) == 0xe0) { cpu_info |= (cpu_info7[1] & 0x40000000) ? kCpuHasAVX512BW : 0; cpu_info |= (cpu_info7[1] & 0x80000000) ? kCpuHasAVX512VL : 0; cpu_info |= (cpu_info7[2] & 0x00000002) ? kCpuHasAVX512VBMI : 0; cpu_info |= (cpu_info7[2] & 0x00000040) ? kCpuHasAVX512VBMI2 : 0; cpu_info |= (cpu_info7[2] & 0x00001000) ? kCpuHasAVX512VBITALG : 0; cpu_info |= (cpu_info7[2] & 0x00004000) ? kCpuHasAVX512VPOPCNTDQ : 0; cpu_info |= (cpu_info7[2] & 0x00000100) ? kCpuHasGFNI : 0; } } #endif #if defined(__mips__) && defined(__linux__) #if defined(__mips_msa) cpu_info = MipsCpuCaps("/proc/cpuinfo", " msa"); #endif cpu_info |= kCpuHasMIPS; #endif #if defined(__arm__) || defined(__aarch64__) // gcc -mfpu=neon defines __ARM_NEON__ // __ARM_NEON__ generates code that requires Neon. NaCL also requires Neon. // For Linux, /proc/cpuinfo can be tested but without that assume Neon. #if defined(__ARM_NEON__) || defined(__native_client__) || !defined(__linux__) cpu_info = kCpuHasNEON; // For aarch64(arm64), /proc/cpuinfo's feature is not complete, e.g. no neon // flag in it. // So for aarch64, neon enabling is hard coded here. #endif #if defined(__aarch64__) cpu_info = kCpuHasNEON; #else // Linux arm parse text file for neon detect. cpu_info = ArmCpuCaps("/proc/cpuinfo"); #endif cpu_info |= kCpuHasARM; #endif // __arm__ cpu_info |= kCpuInitialized; return cpu_info; } // Note that use of this function is not thread safe. LIBYUV_API int MaskCpuFlags(int enable_flags) { int cpu_info = GetCpuFlags() & enable_flags; SetCpuFlags(cpu_info); return cpu_info; } LIBYUV_API int InitCpuFlags(void) { return MaskCpuFlags(-1); } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif