ref: 3ccbd4803bcc75be860dd67bb3a56b114251433b
dir: /vp9/encoder/vp9_bitstream.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <stdio.h> #include <limits.h> #include "vpx_config.h" #include "vpx/vpx_encoder.h" #include "vpx_dsp/bitwriter_buffer.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem_ops.h" #include "vpx_ports/system_state.h" #if CONFIG_BITSTREAM_DEBUG #include "vpx_util/vpx_debug_util.h" #endif // CONFIG_BITSTREAM_DEBUG #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_cost.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_subexp.h" #include "vp9/encoder/vp9_tokenize.h" static const struct vp9_token intra_mode_encodings[INTRA_MODES] = { { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 }, { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 } }; static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] = { { 0, 1 }, { 2, 2 }, { 3, 2 } }; static const struct vp9_token partition_encodings[PARTITION_TYPES] = { { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } }; static const struct vp9_token inter_mode_encodings[INTER_MODES] = { { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 } }; static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode, const vpx_prob *probs) { vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); } static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode, const vpx_prob *probs) { assert(is_inter_mode(mode)); vp9_write_token(w, vp9_inter_mode_tree, probs, &inter_mode_encodings[INTER_OFFSET(mode)]); } static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data, int max) { vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); } static void prob_diff_update(const vpx_tree_index *tree, vpx_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n, vpx_writer *w) { int i; unsigned int branch_ct[32][2]; // Assuming max number of probabilities <= 32 assert(n <= 32); vp9_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); } static void write_selected_tx_size(const VP9_COMMON *cm, const MACROBLOCKD *const xd, vpx_writer *w) { TX_SIZE tx_size = xd->mi[0]->tx_size; BLOCK_SIZE bsize = xd->mi[0]->sb_type; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; const vpx_prob *const tx_probs = get_tx_probs(max_tx_size, get_tx_size_context(xd), &cm->fc->tx_probs); vpx_write(w, tx_size != TX_4X4, tx_probs[0]); if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { vpx_write(w, tx_size != TX_8X8, tx_probs[1]); if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) vpx_write(w, tx_size != TX_16X16, tx_probs[2]); } } static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd, int segment_id, const MODE_INFO *mi, vpx_writer *w) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int skip = mi->skip; vpx_write(w, skip, vp9_get_skip_prob(cm, xd)); return skip; } } static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w, FRAME_COUNTS *counts) { int k; for (k = 0; k < SKIP_CONTEXTS; ++k) vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); } static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w, FRAME_COUNTS *counts) { int j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) prob_diff_update(vp9_switchable_interp_tree, cm->fc->switchable_interp_prob[j], counts->switchable_interp[j], SWITCHABLE_FILTERS, w); } static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp, const TOKENEXTRA *const stop, vpx_bit_depth_t bit_depth) { const TOKENEXTRA *p; const vp9_extra_bit *const extra_bits = #if CONFIG_VP9_HIGHBITDEPTH (bit_depth == VPX_BITS_12) ? vp9_extra_bits_high12 : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits; #else vp9_extra_bits; (void)bit_depth; #endif // CONFIG_VP9_HIGHBITDEPTH for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) { if (p->token == EOB_TOKEN) { vpx_write(w, 0, p->context_tree[0]); continue; } vpx_write(w, 1, p->context_tree[0]); while (p->token == ZERO_TOKEN) { vpx_write(w, 0, p->context_tree[1]); ++p; if (p == stop || p->token == EOSB_TOKEN) { *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); return; } } { const int t = p->token; const vpx_prob *const context_tree = p->context_tree; assert(t != ZERO_TOKEN); assert(t != EOB_TOKEN); assert(t != EOSB_TOKEN); vpx_write(w, 1, context_tree[1]); if (t == ONE_TOKEN) { vpx_write(w, 0, context_tree[2]); vpx_write_bit(w, p->extra & 1); } else { // t >= TWO_TOKEN && t < EOB_TOKEN const struct vp9_token *const a = &vp9_coef_encodings[t]; const int v = a->value; const int n = a->len; const int e = p->extra; vpx_write(w, 1, context_tree[2]); vp9_write_tree(w, vp9_coef_con_tree, vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v, n - UNCONSTRAINED_NODES, 0); if (t >= CATEGORY1_TOKEN) { const vp9_extra_bit *const b = &extra_bits[t]; const unsigned char *pb = b->prob; int v = e >> 1; int n = b->len; // number of bits in v, assumed nonzero do { const int bb = (v >> --n) & 1; vpx_write(w, bb, *pb++); } while (n); } vpx_write_bit(w, e & 1); } } } *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); } static void write_segment_id(vpx_writer *w, const struct segmentation *seg, int segment_id) { if (seg->enabled && seg->update_map) vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); } // This function encodes the reference frame static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd, vpx_writer *w) { const MODE_INFO *const mi = xd->mi[0]; const int is_compound = has_second_ref(mi); const int segment_id = mi->segment_id; // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { assert(!is_compound); assert(mi->ref_frame[0] == get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); } else { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cm->reference_mode == REFERENCE_MODE_SELECT) { vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); } else { assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); } if (is_compound) { const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; vpx_write(w, mi->ref_frame[!idx] == cm->comp_var_ref[1], vp9_get_pred_prob_comp_ref_p(cm, xd)); } else { const int bit0 = mi->ref_frame[0] != LAST_FRAME; vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); if (bit0) { const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME; vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); } } } } static void pack_inter_mode_mvs( VP9_COMP *cpi, const MACROBLOCKD *const xd, const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w, unsigned int *const max_mv_magnitude, int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { VP9_COMMON *const cm = &cpi->common; const nmv_context *nmvc = &cm->fc->nmvc; const struct segmentation *const seg = &cm->seg; const MODE_INFO *const mi = xd->mi[0]; const PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; const BLOCK_SIZE bsize = mi->sb_type; const int allow_hp = cm->allow_high_precision_mv; const int is_inter = is_inter_block(mi); const int is_compound = has_second_ref(mi); int skip, ref; if (seg->update_map) { if (seg->temporal_update) { const int pred_flag = mi->seg_id_predicted; vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); vpx_write(w, pred_flag, pred_prob); if (!pred_flag) write_segment_id(w, seg, segment_id); } else { write_segment_id(w, seg, segment_id); } } skip = write_skip(cm, xd, segment_id, mi, w); if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && !(is_inter && skip)) { write_selected_tx_size(cm, xd, w); } if (!is_inter) { if (bsize >= BLOCK_8X8) { write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); } else { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); } } } write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]); } else { const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; write_ref_frames(cm, xd, w); // If segment skip is not enabled code the mode. if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (bsize >= BLOCK_8X8) { write_inter_mode(w, mode, inter_probs); } } if (cm->interp_filter == SWITCHABLE) { const int ctx = get_pred_context_switchable_interp(xd); vp9_write_token(w, vp9_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx], &switchable_interp_encodings[mi->interp_filter]); ++interp_filter_selected[0][mi->interp_filter]; } else { assert(mi->interp_filter == cm->interp_filter); } if (bsize < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; write_inter_mode(w, b_mode, inter_probs); if (b_mode == NEWMV) { for (ref = 0; ref < 1 + is_compound; ++ref) vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, allow_hp, max_mv_magnitude); } } } } else { if (mode == NEWMV) { for (ref = 0; ref < 1 + is_compound; ++ref) vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv, &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, allow_hp, max_mv_magnitude); } } } } static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd, vpx_writer *w) { const struct segmentation *const seg = &cm->seg; const MODE_INFO *const mi = xd->mi[0]; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const BLOCK_SIZE bsize = mi->sb_type; if (seg->update_map) write_segment_id(w, seg, mi->segment_id); write_skip(cm, xd, mi->segment_id, mi, w); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) write_selected_tx_size(cm, xd, w); if (bsize >= BLOCK_8X8) { write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int block = idy * 2 + idx; write_intra_mode(w, mi->bmi[block].as_mode, get_y_mode_probs(mi, above_mi, left_mi, block)); } } } write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]); } static void write_modes_b( VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, int mi_row, int mi_col, unsigned int *const max_mv_magnitude, int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { const VP9_COMMON *const cm = &cpi->common; const MB_MODE_INFO_EXT *const mbmi_ext = cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); MODE_INFO *m; xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); m = xd->mi[0]; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type], mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows, cm->mi_cols); if (frame_is_intra_only(cm)) { write_mb_modes_kf(cm, xd, w); } else { pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude, interp_filter_selected); } assert(*tok < tok_end); pack_mb_tokens(w, tok, tok_end, cm->bit_depth); } static void write_partition(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, int hbs, int mi_row, int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, vpx_writer *w) { const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const vpx_prob *const probs = xd->partition_probs[ctx]; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (has_rows && has_cols) { vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); } else if (!has_rows && has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); vpx_write(w, p == PARTITION_SPLIT, probs[1]); } else if (has_rows && !has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_VERT); vpx_write(w, p == PARTITION_SPLIT, probs[2]); } else { assert(p == PARTITION_SPLIT); } } static void write_modes_sb( VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize, unsigned int *const max_mv_magnitude, int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { const VP9_COMMON *const cm = &cpi->common; const int bsl = b_width_log2_lookup[bsize]; const int bs = (1 << bsl) / 4; PARTITION_TYPE partition; BLOCK_SIZE subsize; const MODE_INFO *m = NULL; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; partition = partition_lookup[bsl][m->sb_type]; write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); subsize = get_subsize(bsize, partition); if (subsize < BLOCK_8X8) { write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, max_mv_magnitude, interp_filter_selected); } else { switch (partition) { case PARTITION_NONE: write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, max_mv_magnitude, interp_filter_selected); break; case PARTITION_HORZ: write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, max_mv_magnitude, interp_filter_selected); if (mi_row + bs < cm->mi_rows) write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, max_mv_magnitude, interp_filter_selected); break; case PARTITION_VERT: write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, max_mv_magnitude, interp_filter_selected); if (mi_col + bs < cm->mi_cols) write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, max_mv_magnitude, interp_filter_selected); break; default: assert(partition == PARTITION_SPLIT); write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize, max_mv_magnitude, interp_filter_selected); write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, subsize, max_mv_magnitude, interp_filter_selected); write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, subsize, max_mv_magnitude, interp_filter_selected); write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, subsize, max_mv_magnitude, interp_filter_selected); break; } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void write_modes( VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, vpx_writer *w, int tile_row, int tile_col, unsigned int *const max_mv_magnitude, int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { const VP9_COMMON *const cm = &cpi->common; int mi_row, mi_col, tile_sb_row; TOKENEXTRA *tok = NULL; TOKENEXTRA *tok_end = NULL; set_partition_probs(cm, xd); for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >> MI_BLOCK_SIZE_LOG2; tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start; tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count; vp9_zero(xd->left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col, BLOCK_64X64, max_mv_magnitude, interp_filter_selected); assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop); } } static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats *coef_branch_ct, vp9_coeff_probs_model *coef_probs) { vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = cpi->common.counts.eob_branch[tx_size]; int i, j, k, l, m; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { vp9_tree_probs_from_distribution(vp9_coef_tree, coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l]); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; for (m = 0; m < UNCONSTRAINED_NODES; ++m) coef_probs[i][j][k][l][m] = get_binary_prob(coef_branch_ct[i][j][k][l][m][0], coef_branch_ct[i][j][k][l][m][1]); } } } } } static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi, TX_SIZE tx_size, vp9_coeff_stats *frame_branch_ct, vp9_coeff_probs_model *new_coef_probs) { vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; const vpx_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = UNCONSTRAINED_NODES; int i, j, k, l, t; int stepsize = cpi->sf.coeff_prob_appx_step; switch (cpi->sf.use_fast_coef_updates) { case TWO_LOOP: { /* dry run to see if there is any update at all needed */ int savings = 0; int update[2] = { 0, 0 }; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; int s; int u = 0; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], oldp, &newp, upd, stepsize); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vpx_write_bit(bc, 0); return; } vpx_write_bit(bc, 1); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; const vpx_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, stepsize); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vpx_write(bc, u, upd); if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } return; } default: { int updates = 0; int noupdates_before_first = 0; assert(cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; int s; int u = 0; if (t == PIVOT_NODE) { s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, stepsize); } else { s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); } if (s > 0 && newp != *oldp) u = 1; updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; continue; } if (u == 1 && updates == 1) { int v; // first update vpx_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vpx_write(bc, 0, upd); } vpx_write(bc, u, upd); if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } if (updates == 0) { vpx_write_bit(bc, 0); // no updates } return; } } } static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) { const TX_MODE tx_mode = cpi->common.tx_mode; const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { vp9_coeff_stats frame_branch_ct[PLANE_TYPES]; vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES]; if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 || (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { vpx_write_bit(w, 0); } else { build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, frame_coef_probs); } } } static void encode_loopfilter(struct loopfilter *lf, struct vpx_write_bit_buffer *wb) { int i; // Encode the loop filter level and type vpx_wb_write_literal(wb, lf->filter_level, 6); vpx_wb_write_literal(wb, lf->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); if (lf->mode_ref_delta_enabled) { vpx_wb_write_bit(wb, lf->mode_ref_delta_update); if (lf->mode_ref_delta_update) { for (i = 0; i < MAX_REF_LF_DELTAS; i++) { const int delta = lf->ref_deltas[i]; const int changed = delta != lf->last_ref_deltas[i]; vpx_wb_write_bit(wb, changed); if (changed) { lf->last_ref_deltas[i] = delta; vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); vpx_wb_write_bit(wb, delta < 0); } } for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; const int changed = delta != lf->last_mode_deltas[i]; vpx_wb_write_bit(wb, changed); if (changed) { lf->last_mode_deltas[i] = delta; vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); vpx_wb_write_bit(wb, delta < 0); } } } } } static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { vpx_wb_write_bit(wb, 1); vpx_wb_write_literal(wb, abs(delta_q), 4); vpx_wb_write_bit(wb, delta_q < 0); } else { vpx_wb_write_bit(wb, 0); } } static void encode_quantization(const VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); write_delta_q(wb, cm->y_dc_delta_q); write_delta_q(wb, cm->uv_dc_delta_q); write_delta_q(wb, cm->uv_ac_delta_q); } static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, struct vpx_write_bit_buffer *wb) { int i, j; const struct segmentation *seg = &cm->seg; vpx_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Segmentation map vpx_wb_write_bit(wb, seg->update_map); if (seg->update_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cm, xd); // Write out probabilities used to decode unpredicted macro-block segments for (i = 0; i < SEG_TREE_PROBS; i++) { const int prob = seg->tree_probs[i]; const int update = prob != MAX_PROB; vpx_wb_write_bit(wb, update); if (update) vpx_wb_write_literal(wb, prob, 8); } // Write out the chosen coding method. vpx_wb_write_bit(wb, seg->temporal_update); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) { const int prob = seg->pred_probs[i]; const int update = prob != MAX_PROB; vpx_wb_write_bit(wb, update); if (update) vpx_wb_write_literal(wb, prob, 8); } } } // Segmentation data vpx_wb_write_bit(wb, seg->update_data); if (seg->update_data) { vpx_wb_write_bit(wb, seg->abs_delta); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int active = segfeature_active(seg, i, j); vpx_wb_write_bit(wb, active); if (active) { const int data = get_segdata(seg, i, j); const int data_max = vp9_seg_feature_data_max(j); if (vp9_is_segfeature_signed(j)) { encode_unsigned_max(wb, abs(data), data_max); vpx_wb_write_bit(wb, data < 0); } else { encode_unsigned_max(wb, data, data_max); } } } } } } static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w, FRAME_COUNTS *counts) { // Mode vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2); if (cm->tx_mode >= ALLOW_32X32) vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT); // Probabilities if (cm->tx_mode == TX_MODE_SELECT) { int i, j; unsigned int ct_8x8p[TX_SIZES - 3][2]; unsigned int ct_16x16p[TX_SIZES - 2][2]; unsigned int ct_32x32p[TX_SIZES - 1][2]; for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p); for (j = 0; j < TX_SIZES - 3; j++) vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p); for (j = 0; j < TX_SIZES - 2; j++) vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j], ct_16x16p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p); for (j = 0; j < TX_SIZES - 1; j++) vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j], ct_32x32p[j]); } } } static void write_interp_filter(INTERP_FILTER filter, struct vpx_write_bit_buffer *wb) { const int filter_to_literal[] = { 1, 0, 2, 3 }; vpx_wb_write_bit(wb, filter == SWITCHABLE); if (filter != SWITCHABLE) vpx_wb_write_literal(wb, filter_to_literal[filter], 2); } static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) { if (cm->interp_filter == SWITCHABLE) { // Check to see if only one of the filters is actually used int count[SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) count[i] += counts->switchable_interp[j][i]; c += (count[i] > 0); } if (c == 1) { // Only one filter is used. So set the filter at frame level for (i = 0; i < SWITCHABLE_FILTERS; ++i) { if (count[i]) { cm->interp_filter = i; break; } } } } } static void write_tile_info(const VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { int min_log2_tile_cols, max_log2_tile_cols, ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns ones = cm->log2_tile_cols - min_log2_tile_cols; while (ones--) vpx_wb_write_bit(wb, 1); if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0); // rows vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); } int vp9_get_refresh_mask(VP9_COMP *cpi) { if (vp9_preserve_existing_gf(cpi)) { // We have decided to preserve the previously existing golden frame as our // new ARF frame. However, in the short term we leave it in the GF slot and, // if we're updating the GF with the current decoded frame, we save it // instead to the ARF slot. // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it // there so that it can be done outside of the recode loop. // Note: This is highly specific to the use of ARF as a forward reference, // and this needs to be generalized as other uses are implemented // (like RTC/temporal scalability). return (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { int arf_idx = cpi->alt_fb_idx; GF_GROUP *const gf_group = &cpi->twopass.gf_group; if (cpi->multi_layer_arf) { for (arf_idx = 0; arf_idx < REF_FRAMES; ++arf_idx) { if (arf_idx != cpi->alt_fb_idx && arf_idx != cpi->lst_fb_idx && arf_idx != cpi->gld_fb_idx) { int idx; for (idx = 0; idx < gf_group->stack_size; ++idx) if (arf_idx == gf_group->arf_index_stack[idx]) break; if (idx == gf_group->stack_size) break; } } } cpi->twopass.gf_group.top_arf_idx = arf_idx; if (cpi->use_svc && cpi->svc.use_set_ref_frame_config && cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) return cpi->svc.update_buffer_slot[cpi->svc.spatial_layer_id]; return (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << arf_idx); } } static int encode_tile_worker(void *arg1, void *arg2) { VP9_COMP *cpi = (VP9_COMP *)arg1; VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2; MACROBLOCKD *const xd = &data->xd; const int tile_row = 0; vpx_start_encode(&data->bit_writer, data->dest); write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info, &data->bit_writer, tile_row, data->tile_idx, &data->max_mv_magnitude, data->interp_filter_selected); vpx_stop_encode(&data->bit_writer); return 1; } void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) { if (cpi->vp9_bitstream_worker_data) { int i; for (i = 1; i < cpi->num_workers; ++i) { vpx_free(cpi->vp9_bitstream_worker_data[i].dest); } vpx_free(cpi->vp9_bitstream_worker_data); cpi->vp9_bitstream_worker_data = NULL; } } static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) { int i; const size_t worker_data_size = cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data); cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size); memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size); if (!cpi->vp9_bitstream_worker_data) return 1; for (i = 1; i < cpi->num_workers; ++i) { cpi->vp9_bitstream_worker_data[i].dest_size = cpi->oxcf.width * cpi->oxcf.height; cpi->vp9_bitstream_worker_data[i].dest = vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size); if (!cpi->vp9_bitstream_worker_data[i].dest) return 1; } return 0; } static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) { const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; const int num_workers = cpi->num_workers; size_t total_size = 0; int tile_col = 0; if (!cpi->vp9_bitstream_worker_data || cpi->vp9_bitstream_worker_data[1].dest_size > (cpi->oxcf.width * cpi->oxcf.height)) { vp9_bitstream_encode_tiles_buffer_dealloc(cpi); if (encode_tiles_buffer_alloc(cpi)) return 0; } while (tile_col < tile_cols) { int i, j; for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { VPxWorker *const worker = &cpi->workers[i]; VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i]; // Populate the worker data. data->xd = cpi->td.mb.e_mbd; data->tile_idx = tile_col; data->max_mv_magnitude = cpi->max_mv_magnitude; memset(data->interp_filter_selected, 0, sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE); // First thread can directly write into the output buffer. if (i == 0) { // If this worker happens to be for the last tile, then do not offset it // by 4 for the tile size. data->dest = data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4); } worker->data1 = cpi; worker->data2 = data; worker->hook = encode_tile_worker; worker->had_error = 0; if (i < num_workers - 1) { winterface->launch(worker); } else { winterface->execute(worker); } ++tile_col; } for (j = 0; j < i; ++j) { VPxWorker *const worker = &cpi->workers[j]; VP9BitstreamWorkerData *const data = (VP9BitstreamWorkerData *)worker->data2; uint32_t tile_size; int k; if (!winterface->sync(worker)) return 0; tile_size = data->bit_writer.pos; // Aggregate per-thread bitstream stats. cpi->max_mv_magnitude = VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude); for (k = 0; k < SWITCHABLE; ++k) { cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k]; } // Prefix the size of the tile on all but the last. if (tile_col != tile_cols || j < i - 1) { mem_put_be32(data_ptr + total_size, tile_size); total_size += 4; } if (j > 0) { memcpy(data_ptr + total_size, data->dest, tile_size); } total_size += tile_size; } } return total_size; } static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; vpx_writer residual_bc; int tile_row, tile_col; size_t total_size = 0; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); // Encoding tiles in parallel is done only for realtime mode now. In other // modes the speed up is insignificant and requires further testing to ensure // that it does not make the overall process worse in any case. if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 && tile_cols > 1) { return encode_tiles_mt(cpi, data_ptr); } for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { int tile_idx = tile_row * tile_cols + tile_col; if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) vpx_start_encode(&residual_bc, data_ptr + total_size + 4); else vpx_start_encode(&residual_bc, data_ptr + total_size); write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc, tile_row, tile_col, &cpi->max_mv_magnitude, cpi->interp_filter_selected); vpx_stop_encode(&residual_bc); if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { // size of this tile mem_put_be32(data_ptr + total_size, residual_bc.pos); total_size += 4; } total_size += residual_bc.pos; } } return total_size; } static void write_render_size(const VP9_COMMON *cm, struct vpx_write_bit_buffer *wb) { const int scaling_active = cm->width != cm->render_width || cm->height != cm->render_height; vpx_wb_write_bit(wb, scaling_active); if (scaling_active) { vpx_wb_write_literal(wb, cm->render_width - 1, 16); vpx_wb_write_literal(wb, cm->render_height - 1, 16); } } static void write_frame_size(const VP9_COMMON *cm, struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, cm->width - 1, 16); vpx_wb_write_literal(wb, cm->height - 1, 16); write_render_size(cm, wb); } static void write_frame_size_with_refs(VP9_COMP *cpi, struct vpx_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; int found = 0; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); // Set "found" to 0 for temporal svc and for spatial svc key frame if (cpi->use_svc && ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || (cpi->svc.number_spatial_layers > 1 && cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) { found = 0; } else if (cfg != NULL) { found = cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; } vpx_wb_write_bit(wb, found); if (found) { break; } } if (!found) { vpx_wb_write_literal(wb, cm->width - 1, 16); vpx_wb_write_literal(wb, cm->height - 1, 16); } write_render_size(cm, wb); } static void write_sync_code(struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); } static void write_profile(BITSTREAM_PROFILE profile, struct vpx_write_bit_buffer *wb) { switch (profile) { case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break; case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break; case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break; default: assert(profile == PROFILE_3); vpx_wb_write_literal(wb, 6, 3); break; } } static void write_bitdepth_colorspace_sampling( VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { if (cm->profile >= PROFILE_2) { assert(cm->bit_depth > VPX_BITS_8); vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); } vpx_wb_write_literal(wb, cm->color_space, 3); if (cm->color_space != VPX_CS_SRGB) { // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] vpx_wb_write_bit(wb, cm->color_range); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); vpx_wb_write_bit(wb, cm->subsampling_x); vpx_wb_write_bit(wb, cm->subsampling_y); vpx_wb_write_bit(wb, 0); // unused } else { assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); } } else { assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); vpx_wb_write_bit(wb, 0); // unused } } static void write_uncompressed_header(VP9_COMP *cpi, struct vpx_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); write_profile(cm->profile, wb); // If to use show existing frame. vpx_wb_write_bit(wb, cm->show_existing_frame); if (cm->show_existing_frame) { vpx_wb_write_literal(wb, cpi->alt_fb_idx, 3); return; } vpx_wb_write_bit(wb, cm->frame_type); vpx_wb_write_bit(wb, cm->show_frame); vpx_wb_write_bit(wb, cm->error_resilient_mode); if (cm->frame_type == KEY_FRAME) { write_sync_code(wb); write_bitdepth_colorspace_sampling(cm, wb); write_frame_size(cm, wb); } else { if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only); if (!cm->error_resilient_mode) vpx_wb_write_literal(wb, cm->reset_frame_context, 2); if (cm->intra_only) { write_sync_code(wb); // Note for profile 0, 420 8bpp is assumed. if (cm->profile > PROFILE_0) { write_bitdepth_colorspace_sampling(cm, wb); } vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); write_frame_size(cm, wb); } else { MV_REFERENCE_FRAME ref_frame; vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), REF_FRAMES_LOG2); vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); } write_frame_size_with_refs(cpi, wb); vpx_wb_write_bit(wb, cm->allow_high_precision_mv); fix_interp_filter(cm, cpi->td.counts); write_interp_filter(cm->interp_filter, wb); } } if (!cm->error_resilient_mode) { vpx_wb_write_bit(wb, cm->refresh_frame_context); vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode); } vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); encode_loopfilter(&cm->lf, wb); encode_quantization(cm, wb); encode_segmentation(cm, xd, wb); write_tile_info(cm, wb); } static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; FRAME_CONTEXT *const fc = cm->fc; FRAME_COUNTS *counts = cpi->td.counts; vpx_writer header_bc; vpx_start_encode(&header_bc, data); if (xd->lossless) cm->tx_mode = ONLY_4X4; else encode_txfm_probs(cm, &header_bc, counts); update_coef_probs(cpi, &header_bc); update_skip_probs(cm, &header_bc, counts); if (!frame_is_intra_only(cm)) { int i; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i], counts->inter_mode[i], INTER_MODES, &header_bc); if (cm->interp_filter == SWITCHABLE) update_switchable_interp_probs(cm, &header_bc, counts); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], counts->intra_inter[i]); if (cpi->allow_comp_inter_inter) { const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; vpx_write_bit(&header_bc, use_compound_pred); if (use_compound_pred) { vpx_write_bit(&header_bc, use_hybrid_pred); if (use_hybrid_pred) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], counts->comp_inter[i]); } } if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < REF_CONTEXTS; i++) { vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], counts->single_ref[i][0]); vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], counts->single_ref[i][1]); } } if (cm->reference_mode != SINGLE_REFERENCE) for (i = 0; i < REF_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], counts->comp_ref[i]); for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i], counts->y_mode[i], INTRA_MODES, &header_bc); for (i = 0; i < PARTITION_CONTEXTS; ++i) prob_diff_update(vp9_partition_tree, fc->partition_prob[i], counts->partition[i], PARTITION_TYPES, &header_bc); vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, &counts->mv); } vpx_stop_encode(&header_bc); assert(header_bc.pos <= 0xffff); return header_bc.pos; } void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { uint8_t *data = dest; size_t first_part_size, uncompressed_hdr_size; struct vpx_write_bit_buffer wb = { data, 0 }; struct vpx_write_bit_buffer saved_wb; #if CONFIG_BITSTREAM_DEBUG bitstream_queue_reset_write(); #endif write_uncompressed_header(cpi, &wb); // Skip the rest coding process if use show existing frame. if (cpi->common.show_existing_frame) { uncompressed_hdr_size = vpx_wb_bytes_written(&wb); data += uncompressed_hdr_size; *size = data - dest; return; } saved_wb = wb; vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size uncompressed_hdr_size = vpx_wb_bytes_written(&wb); data += uncompressed_hdr_size; vpx_clear_system_state(); first_part_size = write_compressed_header(cpi, data); data += first_part_size; // TODO(jbb): Figure out what to do if first_part_size > 16 bits. vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16); data += encode_tiles(cpi, data); *size = data - dest; }