ref: 4a4ea28a3826d6a9843369bb8880cf49dc7c5dc0
dir: /vp9/encoder/vp9_rdopt.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <math.h> #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/system_state.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_scan.h" #include "vp9/common/vp9_seg_common.h" #if !CONFIG_REALTIME_ONLY #include "vp9/encoder/vp9_aq_variance.h" #endif #include "vp9/encoder/vp9_cost.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_rd.h" #include "vp9/encoder/vp9_rdopt.h" #define LAST_FRAME_MODE_MASK \ ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) #define GOLDEN_FRAME_MODE_MASK \ ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) #define ALT_REF_MODE_MASK \ ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME)) #define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) #define MIN_EARLY_TERM_INDEX 3 #define NEW_MV_DISCOUNT_FACTOR 8 typedef struct { PREDICTION_MODE mode; MV_REFERENCE_FRAME ref_frame[2]; } MODE_DEFINITION; typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION; struct rdcost_block_args { const VP9_COMP *cpi; MACROBLOCK *x; ENTROPY_CONTEXT t_above[16]; ENTROPY_CONTEXT t_left[16]; int this_rate; int64_t this_dist; int64_t this_sse; int64_t this_rd; int64_t best_rd; int exit_early; int use_fast_coef_costing; const scan_order *so; uint8_t skippable; struct buf_2d *this_recon; }; #define LAST_NEW_MV_INDEX 6 #if !CONFIG_REALTIME_ONLY static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { { NEARESTMV, { LAST_FRAME, NONE } }, { NEARESTMV, { ALTREF_FRAME, NONE } }, { NEARESTMV, { GOLDEN_FRAME, NONE } }, { DC_PRED, { INTRA_FRAME, NONE } }, { NEWMV, { LAST_FRAME, NONE } }, { NEWMV, { ALTREF_FRAME, NONE } }, { NEWMV, { GOLDEN_FRAME, NONE } }, { NEARMV, { LAST_FRAME, NONE } }, { NEARMV, { ALTREF_FRAME, NONE } }, { NEARMV, { GOLDEN_FRAME, NONE } }, { ZEROMV, { LAST_FRAME, NONE } }, { ZEROMV, { GOLDEN_FRAME, NONE } }, { ZEROMV, { ALTREF_FRAME, NONE } }, { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { TM_PRED, { INTRA_FRAME, NONE } }, { NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { H_PRED, { INTRA_FRAME, NONE } }, { V_PRED, { INTRA_FRAME, NONE } }, { D135_PRED, { INTRA_FRAME, NONE } }, { D207_PRED, { INTRA_FRAME, NONE } }, { D153_PRED, { INTRA_FRAME, NONE } }, { D63_PRED, { INTRA_FRAME, NONE } }, { D117_PRED, { INTRA_FRAME, NONE } }, { D45_PRED, { INTRA_FRAME, NONE } }, }; static const REF_DEFINITION vp9_ref_order[MAX_REFS] = { { { LAST_FRAME, NONE } }, { { GOLDEN_FRAME, NONE } }, { { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } }, { { GOLDEN_FRAME, ALTREF_FRAME } }, { { INTRA_FRAME, NONE } }, }; #endif // !CONFIG_REALTIME_ONLY static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n, int min_plane, int max_plane) { int i; for (i = min_plane; i < max_plane; ++i) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &x->e_mbd.plane[i]; p->coeff = ctx->coeff_pbuf[i][m]; p->qcoeff = ctx->qcoeff_pbuf[i][m]; pd->dqcoeff = ctx->dqcoeff_pbuf[i][m]; p->eobs = ctx->eobs_pbuf[i][m]; ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n]; ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n]; ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n]; ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n]; ctx->coeff_pbuf[i][n] = p->coeff; ctx->qcoeff_pbuf[i][n] = p->qcoeff; ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff; ctx->eobs_pbuf[i][n] = p->eobs; } } #if !CONFIG_REALTIME_ONLY static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. int i; int64_t rate_sum = 0; int64_t dist_sum = 0; const int ref = xd->mi[0]->ref_frame[0]; unsigned int sse; unsigned int var = 0; int64_t total_sse = 0; int skip_flag = 1; const int shift = 6; int64_t dist; const int dequant_shift = #if CONFIG_VP9_HIGHBITDEPTH (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : #endif // CONFIG_VP9_HIGHBITDEPTH 3; unsigned int qstep_vec[MAX_MB_PLANE]; unsigned int nlog2_vec[MAX_MB_PLANE]; unsigned int sum_sse_vec[MAX_MB_PLANE]; int any_zero_sum_sse = 0; x->pred_sse[ref] = 0; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &xd->plane[i]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); const TX_SIZE max_tx_size = max_txsize_lookup[bs]; const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size]; const int64_t dc_thr = p->quant_thred[0] >> shift; const int64_t ac_thr = p->quant_thred[1] >> shift; unsigned int sum_sse = 0; // The low thresholds are used to measure if the prediction errors are // low enough so that we can skip the mode search. const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2); const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2); int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]); int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]); int idx, idy; int lw = b_width_log2_lookup[unit_size] + 2; int lh = b_height_log2_lookup[unit_size] + 2; for (idy = 0; idy < bh; ++idy) { for (idx = 0; idx < bw; ++idx) { uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw); uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh); int block_idx = (idy << 1) + idx; int low_err_skip = 0; var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride, &sse); x->bsse[(i << 2) + block_idx] = sse; sum_sse += sse; x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE; if (!x->select_tx_size) { // Check if all ac coefficients can be quantized to zero. if (var < ac_thr || var == 0) { x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY; // Check if dc coefficient can be quantized to zero. if (sse - var < dc_thr || sse == var) { x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC; if (!sse || (var < low_ac_thr && sse - var < low_dc_thr)) low_err_skip = 1; } } } if (skip_flag && !low_err_skip) skip_flag = 0; if (i == 0) x->pred_sse[ref] += sse; } } total_sse += sum_sse; sum_sse_vec[i] = sum_sse; any_zero_sum_sse = any_zero_sum_sse || (sum_sse == 0); qstep_vec[i] = pd->dequant[1] >> dequant_shift; nlog2_vec[i] = num_pels_log2_lookup[bs]; } // Fast approximate the modelling function. if (cpi->sf.simple_model_rd_from_var) { for (i = 0; i < MAX_MB_PLANE; ++i) { int64_t rate; const int64_t square_error = sum_sse_vec[i]; int quantizer = qstep_vec[i]; if (quantizer < 120) rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT); else rate = 0; dist = (square_error * quantizer) >> 8; rate_sum += rate; dist_sum += dist; } } else { if (any_zero_sum_sse) { for (i = 0; i < MAX_MB_PLANE; ++i) { int rate; vp9_model_rd_from_var_lapndz(sum_sse_vec[i], nlog2_vec[i], qstep_vec[i], &rate, &dist); rate_sum += rate; dist_sum += dist; } } else { vp9_model_rd_from_var_lapndz_vec(sum_sse_vec, nlog2_vec, qstep_vec, &rate_sum, &dist_sum); } } *skip_txfm_sb = skip_flag; *skip_sse_sb = total_sse << VP9_DIST_SCALE_LOG2; *out_rate_sum = (int)rate_sum; *out_dist_sum = dist_sum << VP9_DIST_SCALE_LOG2; } #endif // !CONFIG_REALTIME_ONLY #if CONFIG_VP9_HIGHBITDEPTH int64_t vp9_highbd_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bd) { int i; int64_t error = 0, sqcoeff = 0; int shift = 2 * (bd - 8); int rounding = shift > 0 ? 1 << (shift - 1) : 0; for (i = 0; i < block_size; i++) { const int64_t diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; } assert(error >= 0 && sqcoeff >= 0); error = (error + rounding) >> shift; sqcoeff = (sqcoeff + rounding) >> shift; *ssz = sqcoeff; return error; } static int64_t vp9_highbd_block_error_dispatch(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bd) { if (bd == 8) { return vp9_block_error(coeff, dqcoeff, block_size, ssz); } else { return vp9_highbd_block_error(coeff, dqcoeff, block_size, ssz, bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz) { int i; int64_t error = 0, sqcoeff = 0; for (i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += coeff[i] * coeff[i]; } *ssz = sqcoeff; return error; } int64_t vp9_block_error_fp_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, int block_size) { int i; int64_t error = 0; for (i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; } return error; } /* The trailing '0' is a terminator which is used inside cost_coeffs() to * decide whether to include cost of a trailing EOB node or not (i.e. we * can skip this if the last coefficient in this transform block, e.g. the * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, * were non-zero). */ static const int16_t band_counts[TX_SIZES][8] = { { 1, 2, 3, 4, 3, 16 - 13, 0 }, { 1, 2, 3, 4, 11, 64 - 21, 0 }, { 1, 2, 3, 4, 11, 256 - 21, 0 }, { 1, 2, 3, 4, 11, 1024 - 21, 0 }, }; static int cost_coeffs(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, int pt, const int16_t *scan, const int16_t *nb, int use_fast_coef_costing) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; const struct macroblock_plane *p = &x->plane[plane]; const PLANE_TYPE type = get_plane_type(plane); const int16_t *band_count = &band_counts[tx_size][1]; const int eob = p->eobs[block]; const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = x->token_costs[tx_size][type][is_inter_block(mi)]; uint8_t token_cache[32 * 32]; int cost; #if CONFIG_VP9_HIGHBITDEPTH const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); #else const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); #endif // Check for consistency of tx_size with mode info assert(type == PLANE_TYPE_Y ? mi->tx_size == tx_size : get_uv_tx_size(mi, &xd->plane[plane]) == tx_size); if (eob == 0) { // single eob token cost = token_costs[0][0][pt][EOB_TOKEN]; } else { if (use_fast_coef_costing) { int band_left = *band_count++; int c; // dc token int v = qcoeff[0]; int16_t prev_t; cost = vp9_get_token_cost(v, &prev_t, cat6_high_cost); cost += (*token_costs)[0][pt][prev_t]; token_cache[0] = vp9_pt_energy_class[prev_t]; ++token_costs; // ac tokens for (c = 1; c < eob; c++) { const int rc = scan[c]; int16_t t; v = qcoeff[rc]; cost += vp9_get_token_cost(v, &t, cat6_high_cost); cost += (*token_costs)[!prev_t][!prev_t][t]; prev_t = t; if (!--band_left) { band_left = *band_count++; ++token_costs; } } // eob token if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; } else { // !use_fast_coef_costing int band_left = *band_count++; int c; // dc token int v = qcoeff[0]; int16_t tok; unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS]; cost = vp9_get_token_cost(v, &tok, cat6_high_cost); cost += (*token_costs)[0][pt][tok]; token_cache[0] = vp9_pt_energy_class[tok]; ++token_costs; tok_cost_ptr = &((*token_costs)[!tok]); // ac tokens for (c = 1; c < eob; c++) { const int rc = scan[c]; v = qcoeff[rc]; cost += vp9_get_token_cost(v, &tok, cat6_high_cost); pt = get_coef_context(nb, token_cache, c); cost += (*tok_cost_ptr)[pt][tok]; token_cache[rc] = vp9_pt_energy_class[tok]; if (!--band_left) { band_left = *band_count++; ++token_costs; } tok_cost_ptr = &((*token_costs)[!tok]); } // eob token if (band_left) { pt = get_coef_context(nb, token_cache, c); cost += (*token_costs)[0][pt][EOB_TOKEN]; } } } return cost; } static INLINE int num_4x4_to_edge(int plane_4x4_dim, int mb_to_edge_dim, int subsampling_dim, int blk_dim) { return plane_4x4_dim + (mb_to_edge_dim >> (5 + subsampling_dim)) - blk_dim; } // Copy all visible 4x4s in the transform block. static void copy_block_visible(const MACROBLOCKD *xd, const struct macroblockd_plane *const pd, const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, int blk_row, int blk_col, const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize) { const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, pd->subsampling_x, blk_col); int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, pd->subsampling_y, blk_row); const int is_highbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; if (tx_bsize == BLOCK_4X4 || (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { const int w = tx_4x4_w << 2; const int h = tx_4x4_h << 2; #if CONFIG_VP9_HIGHBITDEPTH if (is_highbd) { vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), src_stride, CONVERT_TO_SHORTPTR(dst), dst_stride, NULL, 0, 0, 0, 0, w, h, xd->bd); } else { #endif vpx_convolve_copy(src, src_stride, dst, dst_stride, NULL, 0, 0, 0, 0, w, h); #if CONFIG_VP9_HIGHBITDEPTH } #endif } else { int r, c; int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); // if we are in the unrestricted motion border. for (r = 0; r < max_r; ++r) { // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_c; ++c) { const uint8_t *src_ptr = src + r * src_stride * 4 + c * 4; uint8_t *dst_ptr = dst + r * dst_stride * 4 + c * 4; #if CONFIG_VP9_HIGHBITDEPTH if (is_highbd) { vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src_ptr), src_stride, CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, NULL, 0, 0, 0, 0, 4, 4, xd->bd); } else { #endif vpx_convolve_copy(src_ptr, src_stride, dst_ptr, dst_stride, NULL, 0, 0, 0, 0, 4, 4); #if CONFIG_VP9_HIGHBITDEPTH } #endif } } } (void)is_highbd; } // Compute the pixel domain sum square error on all visible 4x4s in the // transform block. static unsigned pixel_sse(const VP9_COMP *const cpi, const MACROBLOCKD *xd, const struct macroblockd_plane *const pd, const uint8_t *src, const int src_stride, const uint8_t *dst, const int dst_stride, int blk_row, int blk_col, const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize) { unsigned int sse = 0; const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, pd->subsampling_x, blk_col); int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, pd->subsampling_y, blk_row); if (tx_bsize == BLOCK_4X4 || (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); } else { const vpx_variance_fn_t vf_4x4 = cpi->fn_ptr[BLOCK_4X4].vf; int r, c; unsigned this_sse = 0; int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); sse = 0; // if we are in the unrestricted motion border. for (r = 0; r < max_r; ++r) { // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_c; ++c) { vf_4x4(src + r * src_stride * 4 + c * 4, src_stride, dst + r * dst_stride * 4 + c * 4, dst_stride, &this_sse); sse += this_sse; } } } return sse; } // Compute the squares sum squares on all visible 4x4s in the transform block. static int64_t sum_squares_visible(const MACROBLOCKD *xd, const struct macroblockd_plane *const pd, const int16_t *diff, const int diff_stride, int blk_row, int blk_col, const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize) { int64_t sse; const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, pd->subsampling_x, blk_col); int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, pd->subsampling_y, blk_row); if (tx_bsize == BLOCK_4X4 || (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { assert(tx_4x4_w == tx_4x4_h); sse = (int64_t)vpx_sum_squares_2d_i16(diff, diff_stride, tx_4x4_w << 2); } else { int r, c; int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); sse = 0; // if we are in the unrestricted motion border. for (r = 0; r < max_r; ++r) { // Skip visiting the sub blocks that are wholly within the UMV. for (c = 0; c < max_c; ++c) { sse += (int64_t)vpx_sum_squares_2d_i16( diff + r * diff_stride * 4 + c * 4, diff_stride, 4); } } } return sse; } static void dist_block(const VP9_COMP *cpi, MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, int block, int blk_row, int blk_col, TX_SIZE tx_size, int64_t *out_dist, int64_t *out_sse, struct buf_2d *out_recon) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int eob = p->eobs[block]; if (!out_recon && x->block_tx_domain && eob) { const int ss_txfrm_size = tx_size << 1; int64_t this_sse; const int shift = tx_size == TX_32X32 ? 0 : 2; const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); const tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); #if CONFIG_VP9_HIGHBITDEPTH const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; *out_dist = vp9_highbd_block_error_dispatch( coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse, bd) >> shift; #else *out_dist = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> shift; #endif // CONFIG_VP9_HIGHBITDEPTH *out_sse = this_sse >> shift; if (x->skip_encode && !is_inter_block(xd->mi[0])) { // TODO(jingning): tune the model to better capture the distortion. const int64_t p = (pd->dequant[1] * pd->dequant[1] * (1 << ss_txfrm_size)) >> #if CONFIG_VP9_HIGHBITDEPTH (shift + 2 + (bd - 8) * 2); #else (shift + 2); #endif // CONFIG_VP9_HIGHBITDEPTH *out_dist += (p >> 4); *out_sse += p; } } else { const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; const int bs = 4 * num_4x4_blocks_wide_lookup[tx_bsize]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int src_idx = 4 * (blk_row * src_stride + blk_col); const int dst_idx = 4 * (blk_row * dst_stride + blk_col); const uint8_t *src = &p->src.buf[src_idx]; const uint8_t *dst = &pd->dst.buf[dst_idx]; uint8_t *out_recon_ptr = 0; const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); unsigned int tmp; tmp = pixel_sse(cpi, xd, pd, src, src_stride, dst, dst_stride, blk_row, blk_col, plane_bsize, tx_bsize); *out_sse = (int64_t)tmp * 16; if (out_recon) { const int out_recon_idx = 4 * (blk_row * out_recon->stride + blk_col); out_recon_ptr = &out_recon->buf[out_recon_idx]; copy_block_visible(xd, pd, dst, dst_stride, out_recon_ptr, out_recon->stride, blk_row, blk_col, plane_bsize, tx_bsize); } if (eob) { #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, recon16[1024]); uint8_t *recon = (uint8_t *)recon16; #else DECLARE_ALIGNED(16, uint8_t, recon[1024]); #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, recon16, 32, NULL, 0, 0, 0, 0, bs, bs, xd->bd); if (xd->lossless) { vp9_highbd_iwht4x4_add(dqcoeff, recon16, 32, eob, xd->bd); } else { switch (tx_size) { case TX_4X4: vp9_highbd_idct4x4_add(dqcoeff, recon16, 32, eob, xd->bd); break; case TX_8X8: vp9_highbd_idct8x8_add(dqcoeff, recon16, 32, eob, xd->bd); break; case TX_16X16: vp9_highbd_idct16x16_add(dqcoeff, recon16, 32, eob, xd->bd); break; default: assert(tx_size == TX_32X32); vp9_highbd_idct32x32_add(dqcoeff, recon16, 32, eob, xd->bd); break; } } recon = CONVERT_TO_BYTEPTR(recon16); } else { #endif // CONFIG_VP9_HIGHBITDEPTH vpx_convolve_copy(dst, dst_stride, recon, 32, NULL, 0, 0, 0, 0, bs, bs); switch (tx_size) { case TX_32X32: vp9_idct32x32_add(dqcoeff, recon, 32, eob); break; case TX_16X16: vp9_idct16x16_add(dqcoeff, recon, 32, eob); break; case TX_8X8: vp9_idct8x8_add(dqcoeff, recon, 32, eob); break; default: assert(tx_size == TX_4X4); // this is like vp9_short_idct4x4 but has a special case around // eob<=1, which is significant (not just an optimization) for // the lossless case. x->inv_txfm_add(dqcoeff, recon, 32, eob); break; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH tmp = pixel_sse(cpi, xd, pd, src, src_stride, recon, 32, blk_row, blk_col, plane_bsize, tx_bsize); if (out_recon) { copy_block_visible(xd, pd, recon, 32, out_recon_ptr, out_recon->stride, blk_row, blk_col, plane_bsize, tx_bsize); } } *out_dist = (int64_t)tmp * 16; } } static int rate_block(int plane, int block, TX_SIZE tx_size, int coeff_ctx, struct rdcost_block_args *args) { return cost_coeffs(args->x, plane, block, tx_size, coeff_ctx, args->so->scan, args->so->neighbors, args->use_fast_coef_costing); } static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct rdcost_block_args *args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; int64_t rd1, rd2, rd; int rate; int64_t dist = INT64_MAX; int64_t sse = INT64_MAX; const int coeff_ctx = combine_entropy_contexts(args->t_left[blk_row], args->t_above[blk_col]); struct buf_2d *recon = args->this_recon; const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int dst_stride = pd->dst.stride; const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; if (args->exit_early) return; if (!is_inter_block(mi)) { #if CONFIG_MISMATCH_DEBUG struct encode_b_args intra_arg = { x, x->block_qcoeff_opt, args->t_above, args->t_left, &mi->skip, 0, 0, 0 }; #else struct encode_b_args intra_arg = { x, x->block_qcoeff_opt, args->t_above, args->t_left, &mi->skip }; #endif vp9_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, &intra_arg); if (recon) { uint8_t *rec_ptr = &recon->buf[4 * (blk_row * recon->stride + blk_col)]; copy_block_visible(xd, pd, dst, dst_stride, rec_ptr, recon->stride, blk_row, blk_col, plane_bsize, tx_bsize); } if (x->block_tx_domain) { dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size, &dist, &sse, /*recon =*/0); } else { const struct macroblock_plane *const p = &x->plane[plane]; const int src_stride = p->src.stride; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; unsigned int tmp; sse = sum_squares_visible(xd, pd, diff, diff_stride, blk_row, blk_col, plane_bsize, tx_bsize); #if CONFIG_VP9_HIGHBITDEPTH if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->bd > 8)) sse = ROUND64_POWER_OF_TWO(sse, (xd->bd - 8) * 2); #endif // CONFIG_VP9_HIGHBITDEPTH sse = sse * 16; tmp = pixel_sse(args->cpi, xd, pd, src, src_stride, dst, dst_stride, blk_row, blk_col, plane_bsize, tx_bsize); dist = (int64_t)tmp * 16; } } else { int skip_txfm_flag = SKIP_TXFM_NONE; if (max_txsize_lookup[plane_bsize] == tx_size) skip_txfm_flag = x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))]; // This reduces the risk of bad perceptual quality due to bad prediction. // We always force the encoder to perform transform and quantization. if (!args->cpi->sf.allow_skip_txfm_ac_dc && skip_txfm_flag == SKIP_TXFM_AC_DC) { skip_txfm_flag = SKIP_TXFM_NONE; } if (skip_txfm_flag == SKIP_TXFM_NONE || (recon && skip_txfm_flag == SKIP_TXFM_AC_ONLY)) { // full forward transform and quantization vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size); if (x->block_qcoeff_opt) vp9_optimize_b(x, plane, block, tx_size, coeff_ctx); dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size, &dist, &sse, recon); } else if (skip_txfm_flag == SKIP_TXFM_AC_ONLY) { // compute DC coefficient tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block); vp9_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize, tx_size); sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; dist = sse; if (x->plane[plane].eobs[block]) { const int64_t orig_sse = (int64_t)coeff[0] * coeff[0]; const int64_t resd_sse = coeff[0] - dqcoeff[0]; int64_t dc_correct = orig_sse - resd_sse * resd_sse; #if CONFIG_VP9_HIGHBITDEPTH dc_correct >>= ((xd->bd - 8) * 2); #endif if (tx_size != TX_32X32) dc_correct >>= 2; dist = VPXMAX(0, sse - dc_correct); } } else { assert(0 && "allow_skip_txfm_ac_dc does not allow SKIP_TXFM_AC_DC."); } } rd = RDCOST(x->rdmult, x->rddiv, 0, dist); if (args->this_rd + rd > args->best_rd) { args->exit_early = 1; return; } rate = rate_block(plane, block, tx_size, coeff_ctx, args); args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist); rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse); // TODO(jingning): temporarily enabled only for luma component rd = VPXMIN(rd1, rd2); if (plane == 0) { x->zcoeff_blk[tx_size][block] = !x->plane[plane].eobs[block] || (x->sharpness == 0 && rd1 > rd2 && !xd->lossless); x->sum_y_eobs[tx_size] += x->plane[plane].eobs[block]; } args->this_rate += rate; args->this_dist += dist; args->this_sse += sse; args->this_rd += rd; if (args->this_rd > args->best_rd) { args->exit_early = 1; return; } args->skippable &= !x->plane[plane].eobs[block]; } static void txfm_rd_in_plane(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size, int use_fast_coef_costing, struct buf_2d *recon) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; struct rdcost_block_args args; vp9_zero(args); args.cpi = cpi; args.x = x; args.best_rd = ref_best_rd; args.use_fast_coef_costing = use_fast_coef_costing; args.skippable = 1; args.this_recon = recon; if (plane == 0) xd->mi[0]->tx_size = tx_size; vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); args.so = get_scan(xd, tx_size, get_plane_type(plane), 0); vp9_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, &args); if (args.exit_early) { *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } else { *distortion = args.this_dist; *rate = args.this_rate; *sse = args.this_sse; *skippable = args.skippable; } } static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs, struct buf_2d *recon) { const TX_SIZE max_tx_size = max_txsize_lookup[bs]; VP9_COMMON *const cm = &cpi->common; const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode]; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; mi->tx_size = VPXMIN(max_tx_size, largest_tx_size); txfm_rd_in_plane(cpi, x, rate, distortion, skip, sse, ref_best_rd, 0, bs, mi->tx_size, cpi->sf.use_fast_coef_costing, recon); } static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, int64_t ref_best_rd, BLOCK_SIZE bs, struct buf_2d *recon) { const TX_SIZE max_tx_size = max_txsize_lookup[bs]; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); int r[TX_SIZES][2], s[TX_SIZES]; int64_t d[TX_SIZES], sse[TX_SIZES]; int64_t rd[TX_SIZES][2] = { { INT64_MAX, INT64_MAX }, { INT64_MAX, INT64_MAX }, { INT64_MAX, INT64_MAX }, { INT64_MAX, INT64_MAX } }; int n; int s0, s1; int64_t best_rd = ref_best_rd; TX_SIZE best_tx = max_tx_size; int start_tx, end_tx; const int tx_size_ctx = get_tx_size_context(xd); #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, recon_buf16[TX_SIZES][64 * 64]); uint8_t *recon_buf[TX_SIZES]; for (n = 0; n < TX_SIZES; ++n) { if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { recon_buf[n] = CONVERT_TO_BYTEPTR(recon_buf16[n]); } else { recon_buf[n] = (uint8_t *)recon_buf16[n]; } } #else DECLARE_ALIGNED(16, uint8_t, recon_buf[TX_SIZES][64 * 64]); #endif // CONFIG_VP9_HIGHBITDEPTH assert(skip_prob > 0); s0 = vp9_cost_bit(skip_prob, 0); s1 = vp9_cost_bit(skip_prob, 1); if (cm->tx_mode == TX_MODE_SELECT) { start_tx = max_tx_size; end_tx = VPXMAX(start_tx - cpi->sf.tx_size_search_depth, 0); if (bs > BLOCK_32X32) end_tx = VPXMIN(end_tx + 1, start_tx); } else { TX_SIZE chosen_tx_size = VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]); start_tx = chosen_tx_size; end_tx = chosen_tx_size; } for (n = start_tx; n >= end_tx; n--) { const int r_tx_size = cpi->tx_size_cost[max_tx_size - 1][tx_size_ctx][n]; if (recon) { struct buf_2d this_recon; this_recon.buf = recon_buf[n]; this_recon.stride = recon->stride; txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], best_rd, 0, bs, n, cpi->sf.use_fast_coef_costing, &this_recon); } else { txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], best_rd, 0, bs, n, cpi->sf.use_fast_coef_costing, 0); } r[n][1] = r[n][0]; if (r[n][0] < INT_MAX) { r[n][1] += r_tx_size; } if (d[n] == INT64_MAX || r[n][0] == INT_MAX) { rd[n][0] = rd[n][1] = INT64_MAX; } else if (s[n]) { if (is_inter_block(mi)) { rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); r[n][1] -= r_tx_size; } else { rd[n][0] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size, sse[n]); } } else { rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); } if (is_inter_block(mi) && !xd->lossless && !s[n] && sse[n] != INT64_MAX) { rd[n][0] = VPXMIN(rd[n][0], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); rd[n][1] = VPXMIN(rd[n][1], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); } // Early termination in transform size search. if (cpi->sf.tx_size_search_breakout && (rd[n][1] == INT64_MAX || (n < (int)max_tx_size && rd[n][1] > rd[n + 1][1]) || s[n] == 1)) break; if (rd[n][1] < best_rd) { best_tx = n; best_rd = rd[n][1]; } } mi->tx_size = best_tx; *distortion = d[mi->tx_size]; *rate = r[mi->tx_size][cm->tx_mode == TX_MODE_SELECT]; *skip = s[mi->tx_size]; *psse = sse[mi->tx_size]; if (recon) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { memcpy(CONVERT_TO_SHORTPTR(recon->buf), CONVERT_TO_SHORTPTR(recon_buf[mi->tx_size]), 64 * 64 * sizeof(uint16_t)); } else { #endif memcpy(recon->buf, recon_buf[mi->tx_size], 64 * 64); #if CONFIG_VP9_HIGHBITDEPTH } #endif } } static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, BLOCK_SIZE bs, int64_t ref_best_rd, struct buf_2d *recon) { MACROBLOCKD *xd = &x->e_mbd; int64_t sse; int64_t *ret_sse = psse ? psse : &sse; assert(bs == xd->mi[0]->sb_type); if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) { choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, bs, recon); } else { choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, bs, recon); } } static int conditional_skipintra(PREDICTION_MODE mode, PREDICTION_MODE best_intra_mode) { if (mode == D117_PRED && best_intra_mode != V_PRED && best_intra_mode != D135_PRED) return 1; if (mode == D63_PRED && best_intra_mode != V_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D207_PRED && best_intra_mode != H_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D153_PRED && best_intra_mode != H_PRED && best_intra_mode != D135_PRED) return 1; return 0; } static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int row, int col, PREDICTION_MODE *best_mode, const int *bmode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion, BLOCK_SIZE bsize, int64_t rd_thresh) { PREDICTION_MODE mode; MACROBLOCKD *const xd = &x->e_mbd; int64_t best_rd = rd_thresh; struct macroblock_plane *p = &x->plane[0]; struct macroblockd_plane *pd = &xd->plane[0]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4]; ENTROPY_CONTEXT ta[2], tempa[2]; ENTROPY_CONTEXT tl[2], templ[2]; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; uint8_t best_dst[8 * 8]; #if CONFIG_VP9_HIGHBITDEPTH uint16_t best_dst16[8 * 8]; #endif memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0])); memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0])); xd->mi[0]->tx_size = TX_4X4; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { for (mode = DC_PRED; mode <= TM_PRED; ++mode) { int64_t this_rd; int ratey = 0; int64_t distortion = 0; int rate = bmode_costs[mode]; if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; // Only do the oblique modes if the best so far is // one of the neighboring directional modes if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mode, *best_mode)) continue; } memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); for (idy = 0; idy < num_4x4_blocks_high; ++idy) { for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { const int block = (row + idy) * 2 + (col + idx); const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); int16_t *const src_diff = vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); xd->mi[0]->bmi[block].as_mode = mode; vp9_predict_intra_block(xd, 1, TX_4X4, mode, x->skip_encode ? src : dst, x->skip_encode ? src_stride : dst_stride, dst, dst_stride, col + idx, row + idy, 0); vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride, xd->bd); if (xd->lossless) { const scan_order *so = &vp9_default_scan_orders[TX_4X4]; const int coeff_ctx = combine_entropy_contexts(tempa[idx], templ[idy]); vp9_highbd_fwht4x4(src_diff, coeff, 8); vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next_highbd; vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst16, dst_stride, p->eobs[block], xd->bd); } else { int64_t unused; const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; const int coeff_ctx = combine_entropy_contexts(tempa[idx], templ[idy]); if (tx_type == DCT_DCT) vpx_highbd_fdct4x4(src_diff, coeff, 8); else vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type); vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); distortion += vp9_highbd_block_error_dispatch( coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, &unused, xd->bd) >> 2; tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next_highbd; vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), dst16, dst_stride, p->eobs[block], xd->bd); } } } rate += ratey; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { memcpy(best_dst16 + idy * 8, CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), num_4x4_blocks_wide * 4 * sizeof(uint16_t)); } } next_highbd : {} } if (best_rd >= rd_thresh || x->skip_encode) return best_rd; for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t)); } return best_rd; } #endif // CONFIG_VP9_HIGHBITDEPTH for (mode = DC_PRED; mode <= TM_PRED; ++mode) { int64_t this_rd; int ratey = 0; int64_t distortion = 0; int rate = bmode_costs[mode]; if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; // Only do the oblique modes if the best so far is // one of the neighboring directional modes if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mode, *best_mode)) continue; } memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); for (idy = 0; idy < num_4x4_blocks_high; ++idy) { for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { const int block = (row + idy) * 2 + (col + idx); const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; int16_t *const src_diff = vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); xd->mi[0]->bmi[block].as_mode = mode; vp9_predict_intra_block(xd, 1, TX_4X4, mode, x->skip_encode ? src : dst, x->skip_encode ? src_stride : dst_stride, dst, dst_stride, col + idx, row + idy, 0); vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); if (xd->lossless) { const scan_order *so = &vp9_default_scan_orders[TX_4X4]; const int coeff_ctx = combine_entropy_contexts(tempa[idx], templ[idy]); vp9_fwht4x4(src_diff, coeff, 8); vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next; vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block]); } else { int64_t unused; const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; const int coeff_ctx = combine_entropy_contexts(tempa[idx], templ[idy]); vp9_fht4x4(src_diff, coeff, 8, tx_type); vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, &unused) >> 2; if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next; vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, p->eobs[block]); } } } rate += ratey; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, num_4x4_blocks_wide * 4); } next : {} } if (best_rd >= rd_thresh || x->skip_encode) return best_rd; for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, num_4x4_blocks_wide * 4); return best_rd; } static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb, int *rate, int *rate_y, int64_t *distortion, int64_t best_rd) { int i, j; const MACROBLOCKD *const xd = &mb->e_mbd; MODE_INFO *const mic = xd->mi[0]; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const BLOCK_SIZE bsize = xd->mi[0]->sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; int cost = 0; int64_t total_distortion = 0; int tot_rate_y = 0; int64_t total_rd = 0; const int *bmode_costs = cpi->mbmode_cost; // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { PREDICTION_MODE best_mode = DC_PRED; int r = INT_MAX, ry = INT_MAX; int64_t d = INT64_MAX, this_rd = INT64_MAX; i = idy * 2 + idx; if (cpi->common.frame_type == KEY_FRAME) { const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i); const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i); bmode_costs = cpi->y_mode_costs[A][L]; } this_rd = rd_pick_intra4x4block( cpi, mb, idy, idx, &best_mode, bmode_costs, xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r, &ry, &d, bsize, best_rd - total_rd); if (this_rd >= best_rd - total_rd) return INT64_MAX; total_rd += this_rd; cost += r; total_distortion += d; tot_rate_y += ry; mic->bmi[i].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_high; ++j) mic->bmi[i + j * 2].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_wide; ++j) mic->bmi[i + j].as_mode = best_mode; if (total_rd >= best_rd) return INT64_MAX; } } *rate = cost; *rate_y = tot_rate_y; *distortion = total_distortion; mic->mode = mic->bmi[3].as_mode; return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); } // This function is used only for intra_only frames static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int64_t best_rd) { PREDICTION_MODE mode; PREDICTION_MODE mode_selected = DC_PRED; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mi[0]; int this_rate, this_rate_tokenonly, s; int64_t this_distortion, this_rd; TX_SIZE best_tx = TX_4X4; int *bmode_costs; const MODE_INFO *above_mi = xd->above_mi; const MODE_INFO *left_mi = xd->left_mi; const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); bmode_costs = cpi->y_mode_costs[A][L]; memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); /* Y Search for intra prediction mode */ for (mode = DC_PRED; mode <= TM_PRED; mode++) { if (cpi->sf.use_nonrd_pick_mode) { // These speed features are turned on in hybrid non-RD and RD mode // for key frame coding in the context of real-time setting. if (conditional_skipintra(mode, mode_selected)) continue; if (*skippable) break; } mic->mode = mode; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, best_rd, /*recon = */ 0); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + bmode_costs[mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; best_tx = mic->tx_size; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } mic->mode = mode_selected; mic->tx_size = best_tx; return best_rd; } // Return value 0: early termination triggered, no valid rd cost available; // 1: rd cost values are valid. static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; const TX_SIZE uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); int plane; int pnrate = 0, pnskip = 1; int64_t pndist = 0, pnsse = 0; int is_cost_valid = 1; if (ref_best_rd < 0) is_cost_valid = 0; if (is_inter_block(mi) && is_cost_valid) { int plane; for (plane = 1; plane < MAX_MB_PLANE; ++plane) vp9_subtract_plane(x, bsize, plane); } *rate = 0; *distortion = 0; *sse = 0; *skippable = 1; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { txfm_rd_in_plane(cpi, x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing, /*recon = */ 0); if (pnrate == INT_MAX) { is_cost_valid = 0; break; } *rate += pnrate; *distortion += pndist; *sse += pnsse; *skippable &= pnskip; } if (!is_cost_valid) { // reset cost value *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } return is_cost_valid; } static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, TX_SIZE max_tx_size) { MACROBLOCKD *xd = &x->e_mbd; PREDICTION_MODE mode; PREDICTION_MODE mode_selected = DC_PRED; int64_t best_rd = INT64_MAX, this_rd; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse; memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); for (mode = DC_PRED; mode <= TM_PRED; ++mode) { if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue; #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->above_mi == NULL || xd->left_mi == NULL) && need_top_left[mode]) continue; #endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH xd->mi[0]->uv_mode = mode; if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, best_rd)) continue; this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[cpi->common.frame_type][xd->mi[0]->mode][mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE); } } xd->mi[0]->uv_mode = mode_selected; return best_rd; } #if !CONFIG_REALTIME_ONLY static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize) { const VP9_COMMON *cm = &cpi->common; int64_t unused; x->e_mbd.mi[0]->uv_mode = DC_PRED; memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused, bsize, INT64_MAX); *rate = *rate_tokenonly + cpi->intra_uv_mode_cost[cm->frame_type][x->e_mbd.mi[0]->mode][DC_PRED]; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x, PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, TX_SIZE max_tx_size, int *rate_uv, int *rate_uv_tokenonly, int64_t *dist_uv, int *skip_uv, PREDICTION_MODE *mode_uv) { // Use an estimated rd for uv_intra based on DC_PRED if the // appropriate speed flag is set. if (cpi->sf.use_uv_intra_rd_estimate) { rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); // Else do a proper rd search for each possible transform size that may // be considered in the main rd loop. } else { rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size); } *mode_uv = x->e_mbd.mi[0]->uv_mode; } static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode, int mode_context) { assert(is_inter_mode(mode)); return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; } static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, int i, PREDICTION_MODE mode, int_mv this_mv[2], int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int_mv seg_mvs[MAX_REF_FRAMES], int_mv *best_ref_mv[2], const int *mvjcost, int *mvcost[2]) { MODE_INFO *const mi = xd->mi[0]; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; int thismvcost = 0; int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mi->sb_type]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mi->sb_type]; const int is_compound = has_second_ref(mi); switch (mode) { case NEWMV: this_mv[0].as_int = seg_mvs[mi->ref_frame[0]].as_int; thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); if (is_compound) { this_mv[1].as_int = seg_mvs[mi->ref_frame[1]].as_int; thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, mvjcost, mvcost, MV_COST_WEIGHT_SUB); } break; case NEARMV: case NEARESTMV: this_mv[0].as_int = frame_mv[mode][mi->ref_frame[0]].as_int; if (is_compound) this_mv[1].as_int = frame_mv[mode][mi->ref_frame[1]].as_int; break; default: assert(mode == ZEROMV); this_mv[0].as_int = 0; if (is_compound) this_mv[1].as_int = 0; break; } mi->bmi[i].as_mv[0].as_int = this_mv[0].as_int; if (is_compound) mi->bmi[i].as_mv[1].as_int = this_mv[1].as_int; mi->bmi[i].as_mode = mode; for (idy = 0; idy < num_4x4_blocks_high; ++idy) for (idx = 0; idx < num_4x4_blocks_wide; ++idx) memmove(&mi->bmi[i + idy * 2 + idx], &mi->bmi[i], sizeof(mi->bmi[i])); return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mi->ref_frame[0]]) + thismvcost; } static int64_t encode_inter_mb_segment(VP9_COMP *cpi, MACROBLOCK *x, int64_t best_yrd, int i, int *labelyrate, int64_t *distortion, int64_t *sse, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, int mi_row, int mi_col) { int k; MACROBLOCKD *xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->sb_type, pd); const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; int idx, idy; const uint8_t *const src = &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; uint8_t *const dst = &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; int64_t thisdistortion = 0, thissse = 0; int thisrate = 0, ref; const scan_order *so = &vp9_default_scan_orders[TX_4X4]; const int is_compound = has_second_ref(mi); const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; for (ref = 0; ref < 1 + is_compound; ++ref) { const int bw = b_width_log2_lookup[BLOCK_8X8]; const int h = 4 * (i >> bw); const int w = 4 * (i & ((1 << bw) - 1)); const struct scale_factors *sf = &xd->block_refs[ref]->sf; int y_stride = pd->pre[ref].stride; uint8_t *pre = pd->pre[ref].buf + (h * pd->pre[ref].stride + w); if (vp9_is_scaled(sf)) { const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); y_stride = xd->block_refs[ref]->buf->y_stride; pre = xd->block_refs[ref]->buf->y_buffer; pre += scaled_buffer_offset(x_start + w, y_start + h, y_stride, sf); } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp9_highbd_build_inter_predictor( CONVERT_TO_SHORTPTR(pre), y_stride, CONVERT_TO_SHORTPTR(dst), pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2), xd->bd); } else { vp9_build_inter_predictor( pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); } #else vp9_build_inter_predictor( pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); #endif // CONFIG_VP9_HIGHBITDEPTH } #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_subtract_block( height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride, xd->bd); } else { vpx_subtract_block(height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride); } #else vpx_subtract_block(height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride); #endif // CONFIG_VP9_HIGHBITDEPTH k = i; for (idy = 0; idy < height / 4; ++idy) { for (idx = 0; idx < width / 4; ++idx) { #if CONFIG_VP9_HIGHBITDEPTH const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; #endif int64_t ssz, rd, rd1, rd2; tran_low_t *coeff; int coeff_ctx; k += (idy * 2 + idx); coeff_ctx = combine_entropy_contexts(ta[k & 1], tl[k >> 1]); coeff = BLOCK_OFFSET(p->coeff, k); x->fwd_txfm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), coeff, 8); vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan); #if CONFIG_VP9_HIGHBITDEPTH thisdistortion += vp9_highbd_block_error_dispatch( coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, bd); #else thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz); #endif // CONFIG_VP9_HIGHBITDEPTH thissse += ssz; thisrate += cost_coeffs(x, 0, k, TX_4X4, coeff_ctx, so->scan, so->neighbors, cpi->sf.use_fast_coef_costing); ta[k & 1] = tl[k >> 1] = (x->plane[0].eobs[k] > 0) ? 1 : 0; rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); rd = VPXMIN(rd1, rd2); if (rd >= best_yrd) return INT64_MAX; } } *distortion = thisdistortion >> 2; *labelyrate = thisrate; *sse = thissse >> 2; return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); } #endif // !CONFIG_REALTIME_ONLY typedef struct { int eobs; int brate; int byrate; int64_t bdist; int64_t bsse; int64_t brdcost; int_mv mvs[2]; ENTROPY_CONTEXT ta[2]; ENTROPY_CONTEXT tl[2]; } SEG_RDSTAT; typedef struct { int_mv *ref_mv[2]; int_mv mvp; int64_t segment_rd; int r; int64_t d; int64_t sse; int segment_yrate; PREDICTION_MODE modes[4]; SEG_RDSTAT rdstat[4][INTER_MODES]; int mvthresh; } BEST_SEG_INFO; #if !CONFIG_REALTIME_ONLY static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { return (mv->row >> 3) < mv_limits->row_min || (mv->row >> 3) > mv_limits->row_max || (mv->col >> 3) < mv_limits->col_min || (mv->col >> 3) > mv_limits->col_max; } static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { MODE_INFO *const mi = x->e_mbd.mi[0]; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; p->src.buf = &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); pd->pre[0].buf = &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; if (has_second_ref(mi)) pd->pre[1].buf = &pd->pre[1] .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)]; } static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, struct buf_2d orig_pre[2]) { MODE_INFO *mi = x->e_mbd.mi[0]; x->plane[0].src = orig_src; x->e_mbd.plane[0].pre[0] = orig_pre[0]; if (has_second_ref(mi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; } static INLINE int mv_has_subpel(const MV *mv) { return (mv->row & 0x0F) || (mv->col & 0x0F); } // Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. // TODO(aconverse): Find out if this is still productive then clean up or remove static int check_best_zero_mv(const VP9_COMP *cpi, const uint8_t mode_context[MAX_REF_FRAMES], int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int this_mode, const MV_REFERENCE_FRAME ref_frames[2]) { if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && frame_mv[this_mode][ref_frames[0]].as_int == 0 && (ref_frames[1] == NONE || frame_mv[this_mode][ref_frames[1]].as_int == 0)) { int rfc = mode_context[ref_frames[0]]; int c1 = cost_mv_ref(cpi, NEARMV, rfc); int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); int c3 = cost_mv_ref(cpi, ZEROMV, rfc); if (this_mode == NEARMV) { if (c1 > c3) return 0; } else if (this_mode == NEARESTMV) { if (c2 > c3) return 0; } else { assert(this_mode == ZEROMV); if (ref_frames[1] == NONE) { if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) return 0; } else { if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && frame_mv[NEARMV][ref_frames[1]].as_int == 0)) return 0; } } } return 1; } static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], int *rate_mv) { const VP9_COMMON *const cm = &cpi->common; const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; const int refs[2] = { mi->ref_frame[0], mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1] }; int_mv ref_mv[2]; int ite, ref; const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; struct scale_factors sf; // Do joint motion search in compound mode to get more accurate mv. struct buf_2d backup_yv12[2][MAX_MB_PLANE]; uint32_t last_besterr[2] = { UINT_MAX, UINT_MAX }; const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]), vp9_get_scaled_ref_frame(cpi, mi->ref_frame[1]) }; // Prediction buffer from second frame. #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]); uint8_t *second_pred; #else DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]); #endif // CONFIG_VP9_HIGHBITDEPTH for (ref = 0; ref < 2; ++ref) { ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; if (scaled_ref_frame[ref]) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[ref][i] = xd->plane[i].pre[ref]; vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, NULL); } frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int; } // Since we have scaled the reference frames to match the size of the current // frame we must use a unit scaling factor during mode selection. #if CONFIG_VP9_HIGHBITDEPTH vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, cm->height, cm->use_highbitdepth); #else vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, cm->height); #endif // CONFIG_VP9_HIGHBITDEPTH // Allow joint search multiple times iteratively for each reference frame // and break out of the search loop if it couldn't find a better mv. for (ite = 0; ite < 4; ite++) { struct buf_2d ref_yv12[2]; uint32_t bestsme = UINT_MAX; int sadpb = x->sadperbit16; MV tmp_mv; int search_range = 3; const MvLimits tmp_mv_limits = x->mv_limits; int id = ite % 2; // Even iterations search in the first reference frame, // odd iterations search in the second. The predictor // found for the 'other' reference frame is factored in. // Initialized here because of compiler problem in Visual Studio. ref_yv12[0] = xd->plane[0].pre[0]; ref_yv12[1] = xd->plane[0].pre[1]; // Get the prediction block from the 'other' reference frame. #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); vp9_highbd_build_inter_predictor( CONVERT_TO_SHORTPTR(ref_yv12[!id].buf), ref_yv12[!id].stride, second_pred_alloc_16, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd); } else { second_pred = (uint8_t *)second_pred_alloc_16; vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE); } #else vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE); #endif // CONFIG_VP9_HIGHBITDEPTH // Do compound motion search on the current reference frame. if (id) xd->plane[0].pre[0] = ref_yv12[id]; vp9_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); // Use the mv result from the single mode as mv predictor. tmp_mv = frame_mv[refs[id]].as_mv; tmp_mv.col >>= 3; tmp_mv.row >>= 3; // Small-range full-pixel motion search. bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, search_range, &cpi->fn_ptr[bsize], &ref_mv[id].as_mv, second_pred); if (bestsme < UINT_MAX) bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv, second_pred, &cpi->fn_ptr[bsize], 1); x->mv_limits = tmp_mv_limits; if (bestsme < UINT_MAX) { uint32_t dis; /* TODO: use dis in distortion calculation later. */ uint32_t sse; bestsme = cpi->find_fractional_mv_step( x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_search_level, NULL, x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, pw, ph, cpi->sf.use_accurate_subpel_search); } // Restore the pointer to the first (possibly scaled) prediction buffer. if (id) xd->plane[0].pre[0] = ref_yv12[0]; if (bestsme < last_besterr[id]) { frame_mv[refs[id]].as_mv = tmp_mv; last_besterr[id] = bestsme; } else { break; } } *rate_mv = 0; for (ref = 0; ref < 2; ++ref) { if (scaled_ref_frame[ref]) { // Restore the prediction frame pointers to their unscaled versions. int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[ref] = backup_yv12[ref][i]; } *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv, &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } } static int64_t rd_pick_best_sub8x8_mode( VP9_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) { int i; BEST_SEG_INFO *bsi = bsi_buf + filter_idx; MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; int mode_idx; int k, br = 0, idx, idy; int64_t bd = 0, block_sse = 0; PREDICTION_MODE this_mode; VP9_COMMON *cm = &cpi->common; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const int label_count = 4; int64_t this_segment_rd = 0; int label_mv_thresh; int segmentyrate = 0; const BLOCK_SIZE bsize = mi->sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; const int pw = num_4x4_blocks_wide << 2; const int ph = num_4x4_blocks_high << 2; ENTROPY_CONTEXT t_above[2], t_left[2]; int subpelmv = 1, have_ref = 0; SPEED_FEATURES *const sf = &cpi->sf; const int has_second_rf = has_second_ref(mi); const int inter_mode_mask = sf->inter_mode_mask[bsize]; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; vp9_zero(*bsi); bsi->segment_rd = best_rd; bsi->ref_mv[0] = best_ref_mv; bsi->ref_mv[1] = second_best_ref_mv; bsi->mvp.as_int = best_ref_mv->as_int; bsi->mvthresh = mvthresh; for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV; memcpy(t_above, pd->above_context, sizeof(t_above)); memcpy(t_left, pd->left_context, sizeof(t_left)); // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count; // Segmentation method overheads for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { // TODO(jingning,rbultje): rewrite the rate-distortion optimization // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop int_mv mode_mv[MB_MODE_COUNT][2]; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; PREDICTION_MODE mode_selected = ZEROMV; int64_t best_rd = INT64_MAX; const int i = idy * 2 + idx; int ref; for (ref = 0; ref < 1 + has_second_rf; ++ref) { const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; frame_mv[ZEROMV][frame].as_int = 0; vp9_append_sub8x8_mvs_for_idx( cm, xd, i, ref, mi_row, mi_col, &frame_mv[NEARESTMV][frame], &frame_mv[NEARMV][frame], mbmi_ext->mode_context); } // search for the best motion vector on this segment for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { const struct buf_2d orig_src = x->plane[0].src; struct buf_2d orig_pre[2]; mode_idx = INTER_OFFSET(this_mode); bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; if (!(inter_mode_mask & (1 << this_mode))) continue; if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode, mi->ref_frame)) continue; memcpy(orig_pre, pd->pre, sizeof(orig_pre)); memcpy(bsi->rdstat[i][mode_idx].ta, t_above, sizeof(bsi->rdstat[i][mode_idx].ta)); memcpy(bsi->rdstat[i][mode_idx].tl, t_left, sizeof(bsi->rdstat[i][mode_idx].tl)); // motion search for newmv (single predictor case only) if (!has_second_rf && this_mode == NEWMV && seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) { MV *const new_mv = &mode_mv[NEWMV][0].as_mv; int step_param = 0; uint32_t bestsme = UINT_MAX; int sadpb = x->sadperbit4; MV mvp_full; int max_mv; int cost_list[5]; const MvLimits tmp_mv_limits = x->mv_limits; /* Is the best so far sufficiently good that we cant justify doing * and new motion search. */ if (best_rd < label_mv_thresh) break; if (cpi->oxcf.mode != BEST) { // use previous block's result as next block's MV predictor. if (i > 0) { bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; } } if (i == 0) max_mv = x->max_mv_context[mi->ref_frame[0]]; else max_mv = VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; if (sf->mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and the best ref mvs of the current block for // the given reference. step_param = (vp9_init_search_range(max_mv) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } mvp_full.row = bsi->mvp.as_mv.row >> 3; mvp_full.col = bsi->mvp.as_mv.col >> 3; if (sf->adaptive_motion_search) { if (x->pred_mv[mi->ref_frame[0]].row != INT16_MAX && x->pred_mv[mi->ref_frame[0]].col != INT16_MAX) { mvp_full.row = x->pred_mv[mi->ref_frame[0]].row >> 3; mvp_full.col = x->pred_mv[mi->ref_frame[0]].col >> 3; } step_param = VPXMAX(step_param, 8); } // adjust src pointer for this block mi_buf_shift(x, i); vp9_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv); bestsme = vp9_full_pixel_search( cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, &bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1); x->mv_limits = tmp_mv_limits; if (bestsme < UINT_MAX) { uint32_t distortion; cpi->find_fractional_mv_step( x, new_mv, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], sf->mv.subpel_force_stop, sf->mv.subpel_search_level, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &distortion, &x->pred_sse[mi->ref_frame[0]], NULL, pw, ph, cpi->sf.use_accurate_subpel_search); // save motion search result for use in compound prediction seg_mvs[i][mi->ref_frame[0]].as_mv = *new_mv; } x->pred_mv[mi->ref_frame[0]] = *new_mv; // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } if (has_second_rf) { if (seg_mvs[i][mi->ref_frame[1]].as_int == INVALID_MV || seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) continue; } if (has_second_rf && this_mode == NEWMV && mi->interp_filter == EIGHTTAP) { // adjust src pointers mi_buf_shift(x, i); if (sf->comp_inter_joint_search_thresh <= bsize) { int rate_mv; joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, mi_col, seg_mvs[i], &rate_mv); seg_mvs[i][mi->ref_frame[0]].as_int = frame_mv[this_mode][mi->ref_frame[0]].as_int; seg_mvs[i][mi->ref_frame[1]].as_int = frame_mv[this_mode][mi->ref_frame[1]].as_int; } // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs( cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost, x->mvcost); for (ref = 0; ref < 1 + has_second_rf; ++ref) { bsi->rdstat[i][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int = mode_mv[this_mode][ref].as_int; } // Trap vectors that reach beyond the UMV borders if (mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][0].as_mv) || (has_second_rf && mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][1].as_mv))) continue; if (filter_idx > 0) { BEST_SEG_INFO *ref_bsi = bsi_buf; subpelmv = 0; have_ref = 1; for (ref = 0; ref < 1 + has_second_rf; ++ref) { subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); have_ref &= mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; } if (filter_idx > 1 && !subpelmv && !have_ref) { ref_bsi = bsi_buf + 1; have_ref = 1; for (ref = 0; ref < 1 + has_second_rf; ++ref) have_ref &= mode_mv[this_mode][ref].as_int == ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; } if (!subpelmv && have_ref && ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], sizeof(SEG_RDSTAT)); if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].eobs = ref_bsi->rdstat[i + 1][mode_idx].eobs; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].eobs = ref_bsi->rdstat[i + 2][mode_idx].eobs; if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } continue; } } bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment( cpi, x, bsi->segment_rd - this_segment_rd, i, &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist, &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta, bsi->rdstat[i][mode_idx].tl, mi_row, mi_col); if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0); bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; bsi->rdstat[i][mode_idx].eobs = p->eobs[i]; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1]; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2]; } if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } } /*for each 4x4 mode*/ if (best_rd == INT64_MAX) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) for (midx = 0; midx < INTER_MODES; ++midx) bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return INT64_MAX; } mode_idx = INTER_OFFSET(mode_selected); memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected], frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost, x->mvcost); br += bsi->rdstat[i][mode_idx].brate; bd += bsi->rdstat[i][mode_idx].bdist; block_sse += bsi->rdstat[i][mode_idx].bsse; segmentyrate += bsi->rdstat[i][mode_idx].byrate; this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; if (this_segment_rd > bsi->segment_rd) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) for (midx = 0; midx < INTER_MODES; ++midx) bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return INT64_MAX; } } } /* for each label */ bsi->r = br; bsi->d = bd; bsi->segment_yrate = segmentyrate; bsi->segment_rd = this_segment_rd; bsi->sse = block_sse; // update the coding decisions for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode; if (bsi->segment_rd > best_rd) return INT64_MAX; /* set it to the best */ for (i = 0; i < 4; i++) { mode_idx = INTER_OFFSET(bsi->modes[i]); mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; if (has_second_ref(mi)) mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; mi->bmi[i].as_mode = bsi->modes[i]; } /* * used to set mbmi->mv.as_int */ *returntotrate = bsi->r; *returndistortion = bsi->d; *returnyrate = bsi->segment_yrate; *skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0); *psse = bsi->sse; mi->mode = bsi->modes[3]; return bsi->segment_rd; } static void estimate_ref_frame_costs(const VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, unsigned int *ref_costs_single, unsigned int *ref_costs_comp, vpx_prob *comp_mode_p) { int seg_ref_active = segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); *comp_mode_p = 128; } else { vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); vpx_prob comp_inter_p = 128; if (cm->reference_mode == REFERENCE_MODE_SELECT) { comp_inter_p = vp9_get_reference_mode_prob(cm, xd); *comp_mode_p = comp_inter_p; } else { *comp_mode_p = 128; } ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); if (cm->reference_mode != COMPOUND_REFERENCE) { vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); if (cm->reference_mode == REFERENCE_MODE_SELECT) base_cost += vp9_cost_bit(comp_inter_p, 0); ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = ref_costs_single[ALTREF_FRAME] = base_cost; ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); } else { ref_costs_single[LAST_FRAME] = 512; ref_costs_single[GOLDEN_FRAME] = 512; ref_costs_single[ALTREF_FRAME] = 512; } if (cm->reference_mode != SINGLE_REFERENCE) { vpx_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd); unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); if (cm->reference_mode == REFERENCE_MODE_SELECT) base_cost += vp9_cost_bit(comp_inter_p, 1); ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0); ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1); } else { ref_costs_comp[LAST_FRAME] = 512; ref_costs_comp[GOLDEN_FRAME] = 512; } } } static void store_coding_context( MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, int64_t comp_pred_diff[REFERENCE_MODES], int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], int skippable) { MACROBLOCKD *const xd = &x->e_mbd; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way ctx->skip = x->skip; ctx->skippable = skippable; ctx->best_mode_index = mode_index; ctx->mic = *xd->mi[0]; ctx->mbmi_ext = *x->mbmi_ext; ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; memcpy(ctx->best_filter_diff, best_filter_diff, sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS); } static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE block_size, int mi_row, int mi_col, int_mv frame_nearest_mv[MAX_REF_FRAMES], int_mv frame_near_mv[MAX_REF_FRAMES], struct buf_2d yv12_mb[4][MAX_MB_PLANE]) { const VP9_COMMON *cm = &cpi->common; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; assert(yv12 != NULL); // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this // use the UV scaling factors. vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); // Gets an initial list of candidate vectors from neighbours and orders them vp9_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col, mbmi_ext->mode_context); // Candidate refinement carried out at encoder and decoder vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, &frame_nearest_mv[ref_frame], &frame_near_mv[ref_frame]); // Further refinement that is encode side only to test the top few candidates // in full and choose the best as the centre point for subsequent searches. // The current implementation doesn't support scaling. if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8) vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, block_size); } #if CONFIG_NON_GREEDY_MV static int ref_frame_to_gf_rf_idx(int ref_frame) { if (ref_frame == GOLDEN_FRAME) { return 0; } if (ref_frame == LAST_FRAME) { return 1; } if (ref_frame == ALTREF_FRAME) { return 2; } assert(0); return -1; } #endif static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv) { MACROBLOCKD *xd = &x->e_mbd; const VP9_COMMON *cm = &cpi->common; MODE_INFO *mi = xd->mi[0]; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; int step_param; MV mvp_full; int ref = mi->ref_frame[0]; MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; const MvLimits tmp_mv_limits = x->mv_limits; int cost_list[5]; const int best_predmv_idx = x->mv_best_ref_index[ref]; const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi, ref); const int pw = num_4x4_blocks_wide_lookup[bsize] << 2; const int ph = num_4x4_blocks_high_lookup[bsize] << 2; MV pred_mv[3]; int bestsme = INT_MAX; #if CONFIG_NON_GREEDY_MV int gf_group_idx = cpi->twopass.gf_group.index; int gf_rf_idx = ref_frame_to_gf_rf_idx(ref); BLOCK_SIZE square_bsize = get_square_block_size(bsize); int_mv nb_full_mvs[NB_MVS_NUM] = { 0 }; MotionField *motion_field = vp9_motion_field_info_get_motion_field( &cpi->motion_field_info, gf_group_idx, gf_rf_idx, square_bsize); const int nb_full_mv_num = vp9_prepare_nb_full_mvs(motion_field, mi_row, mi_col, nb_full_mvs); const int lambda = (pw * ph) / 4; assert(pw * ph == lambda << 2); #else // CONFIG_NON_GREEDY_MV int sadpb = x->sadperbit16; #endif // CONFIG_NON_GREEDY_MV pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; pred_mv[2] = x->pred_mv[ref]; if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); } // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is VPXMAX >> 1 etc. if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (vp9_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / 2; } else { step_param = cpi->mv_step_param; } if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) { const int boffset = 2 * (b_width_log2_lookup[BLOCK_64X64] - VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); step_param = VPXMAX(step_param, boffset); } if (cpi->sf.adaptive_motion_search) { int bwl = b_width_log2_lookup[bsize]; int bhl = b_height_log2_lookup[bsize]; int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); if (tlevel < 5) step_param += 2; // prev_mv_sad is not setup for dynamically scaled frames. if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { int i; for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { x->pred_mv[ref].row = INT16_MAX; x->pred_mv[ref].col = INT16_MAX; tmp_mv->as_int = INVALID_MV; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[0] = backup_yv12[i]; } return; } } } } // Note: MV limits are modified here. Always restore the original values // after full-pixel motion search. vp9_set_mv_search_range(&x->mv_limits, &ref_mv); mvp_full = pred_mv[best_predmv_idx]; mvp_full.col >>= 3; mvp_full.row >>= 3; #if CONFIG_NON_GREEDY_MV bestsme = vp9_full_pixel_diamond_new(cpi, x, bsize, &mvp_full, step_param, lambda, 1, nb_full_mvs, nb_full_mv_num, &tmp_mv->as_mv); #else // CONFIG_NON_GREEDY_MV bestsme = vp9_full_pixel_search( cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 1); #endif // CONFIG_NON_GREEDY_MV if (cpi->sf.enhanced_full_pixel_motion_search) { int i; for (i = 0; i < 3; ++i) { int this_me; MV this_mv; int diff_row; int diff_col; int step; if (pred_mv[i].row == INT16_MAX || pred_mv[i].col == INT16_MAX) continue; if (i == best_predmv_idx) continue; diff_row = ((int)pred_mv[i].row - pred_mv[i > 0 ? (i - 1) : best_predmv_idx].row) >> 3; diff_col = ((int)pred_mv[i].col - pred_mv[i > 0 ? (i - 1) : best_predmv_idx].col) >> 3; if (diff_row == 0 && diff_col == 0) continue; if (diff_row < 0) diff_row = -diff_row; if (diff_col < 0) diff_col = -diff_col; step = get_msb((diff_row + diff_col + 1) >> 1); if (step <= 0) continue; mvp_full = pred_mv[i]; mvp_full.col >>= 3; mvp_full.row >>= 3; #if CONFIG_NON_GREEDY_MV this_me = vp9_full_pixel_diamond_new( cpi, x, bsize, &mvp_full, VPXMAX(step_param, MAX_MVSEARCH_STEPS - step), lambda, 1, nb_full_mvs, nb_full_mv_num, &this_mv); #else // CONFIG_NON_GREEDY_MV this_me = vp9_full_pixel_search( cpi, x, bsize, &mvp_full, VPXMAX(step_param, MAX_MVSEARCH_STEPS - step), cpi->sf.mv.search_method, sadpb, cond_cost_list(cpi, cost_list), &ref_mv, &this_mv, INT_MAX, 1); #endif // CONFIG_NON_GREEDY_MV if (this_me < bestsme) { tmp_mv->as_mv = this_mv; bestsme = this_me; } } } x->mv_limits = tmp_mv_limits; if (bestsme < INT_MAX) { uint32_t dis; /* TODO: use dis in distortion calculation later. */ cpi->find_fractional_mv_step( x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_search_level, cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph, cpi->sf.use_accurate_subpel_search); } *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); x->pred_mv[ref] = tmp_mv->as_mv; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } } static INLINE void restore_dst_buf(MACROBLOCKD *xd, uint8_t *orig_dst[MAX_MB_PLANE], int orig_dst_stride[MAX_MB_PLANE]) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } } // In some situations we want to discount tha pparent cost of a new motion // vector. Where there is a subtle motion field and especially where there is // low spatial complexity then it can be hard to cover the cost of a new motion // vector in a single block, even if that motion vector reduces distortion. // However, once established that vector may be usable through the nearest and // near mv modes to reduce distortion in subsequent blocks and also improve // visual quality. static int discount_newmv_test(VP9_COMP *cpi, int this_mode, int_mv this_mv, int_mv (*mode_mv)[MAX_REF_FRAMES], int ref_frame, int mi_row, int mi_col, BLOCK_SIZE bsize) { #if CONFIG_NON_GREEDY_MV (void)mode_mv; (void)this_mv; if (this_mode == NEWMV && bsize >= BLOCK_8X8 && cpi->tpl_ready) { const int gf_group_idx = cpi->twopass.gf_group.index; const int gf_rf_idx = ref_frame_to_gf_rf_idx(ref_frame); const TplDepFrame tpl_frame = cpi->tpl_stats[gf_group_idx]; const MotionField *motion_field = vp9_motion_field_info_get_motion_field( &cpi->motion_field_info, gf_group_idx, gf_rf_idx, cpi->tpl_bsize); const int tpl_block_mi_h = num_8x8_blocks_high_lookup[cpi->tpl_bsize]; const int tpl_block_mi_w = num_8x8_blocks_wide_lookup[cpi->tpl_bsize]; const int tpl_mi_row = mi_row - (mi_row % tpl_block_mi_h); const int tpl_mi_col = mi_col - (mi_col % tpl_block_mi_w); const int mv_mode = tpl_frame .mv_mode_arr[gf_rf_idx][tpl_mi_row * tpl_frame.stride + tpl_mi_col]; if (mv_mode == NEW_MV_MODE) { int_mv tpl_new_mv = vp9_motion_field_mi_get_mv(motion_field, tpl_mi_row, tpl_mi_col); int row_diff = abs(tpl_new_mv.as_mv.row - this_mv.as_mv.row); int col_diff = abs(tpl_new_mv.as_mv.col - this_mv.as_mv.col); if (VPXMAX(row_diff, col_diff) <= 8) { return 1; } else { return 0; } } else { return 0; } } else { return 0; } #else (void)mi_row; (void)mi_col; (void)bsize; return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && (this_mv.as_int != 0) && ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && ((mode_mv[NEARMV][ref_frame].as_int == 0) || (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); #endif } static int64_t handle_inter_mode( VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2, int64_t *distortion, int *skippable, int *rate_y, int *rate_uv, struct buf_2d *recon, int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], INTERP_FILTER (*single_filter)[MAX_REF_FRAMES], int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse, const int64_t ref_best_rd, int64_t *mask_filter, int64_t filter_cache[]) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const int is_comp_pred = has_second_ref(mi); const int this_mode = mi->mode; int_mv *frame_mv = mode_mv[this_mode]; int i; int refs[2] = { mi->ref_frame[0], (mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]) }; int_mv cur_mv[2]; #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]); uint8_t *tmp_buf; #else DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]); #endif // CONFIG_VP9_HIGHBITDEPTH int pred_exists = 0; int intpel_mv; int64_t rd, tmp_rd, best_rd = INT64_MAX; int best_needs_copy = 0; uint8_t *orig_dst[MAX_MB_PLANE]; int orig_dst_stride[MAX_MB_PLANE]; int rs = 0; INTERP_FILTER best_filter = SWITCHABLE; uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 }; int64_t bsse[MAX_MB_PLANE << 2] = { 0 }; int bsl = mi_width_log2_lookup[bsize]; int pred_filter_search = cpi->sf.cb_pred_filter_search ? (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_video_frame)) & 0x1 : 0; int skip_txfm_sb = 0; int64_t skip_sse_sb = INT64_MAX; int64_t distortion_y = 0, distortion_uv = 0; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16); } else { tmp_buf = (uint8_t *)tmp_buf16; } #endif // CONFIG_VP9_HIGHBITDEPTH if (pred_filter_search) { INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE; if (xd->above_mi && is_inter_block(xd->above_mi)) af = xd->above_mi->interp_filter; if (xd->left_mi && is_inter_block(xd->left_mi)) lf = xd->left_mi->interp_filter; if ((this_mode != NEWMV) || (af == lf)) best_filter = af; } if (is_comp_pred) { if (frame_mv[refs[0]].as_int == INVALID_MV || frame_mv[refs[1]].as_int == INVALID_MV) return INT64_MAX; if (cpi->sf.adaptive_mode_search) { if (single_filter[this_mode][refs[0]] == single_filter[this_mode][refs[1]]) best_filter = single_filter[this_mode][refs[0]]; } } if (this_mode == NEWMV) { int rate_mv; if (is_comp_pred) { // Initialize mv using single prediction mode result. frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, single_newmv, &rate_mv); } else { rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv, &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv, &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); } *rate2 += rate_mv; } else { int_mv tmp_mv; single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv); if (tmp_mv.as_int == INVALID_MV) return INT64_MAX; frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int = tmp_mv.as_int; single_newmv[refs[0]].as_int = tmp_mv.as_int; // Estimate the rate implications of a new mv but discount this // under certain circumstances where we want to help initiate a weak // motion field, where the distortion gain for a single block may not // be enough to overcome the cost of a new mv. if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0], mi_row, mi_col, bsize)) { *rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); } else { *rate2 += rate_mv; } } } for (i = 0; i < is_comp_pred + 1; ++i) { cur_mv[i] = frame_mv[refs[i]]; // Clip "next_nearest" so that it does not extend to far out of image if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; mi->mv[i].as_int = cur_mv[i].as_int; } // do first prediction into the destination buffer. Do the next // prediction into a temporary buffer. Then keep track of which one // of these currently holds the best predictor, and use the other // one for future predictions. In the end, copy from tmp_buf to // dst if necessary. for (i = 0; i < MAX_MB_PLANE; i++) { orig_dst[i] = xd->plane[i].dst.buf; orig_dst_stride[i] = xd->plane[i].dst.stride; } // We don't include the cost of the second reference here, because there // are only two options: Last/ARF or Golden/ARF; The second one is always // known, which is ARF. // // Under some circumstances we discount the cost of new mv mode to encourage // initiation of a motion field. if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, refs[0], mi_row, mi_col, bsize)) { *rate2 += VPXMIN(cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]), cost_mv_ref(cpi, NEARESTMV, mbmi_ext->mode_context[refs[0]])); } else { *rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]); } if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd && mi->mode != NEARESTMV) return INT64_MAX; pred_exists = 0; // Are all MVs integer pel for Y and UV intpel_mv = !mv_has_subpel(&mi->mv[0].as_mv); if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mi->mv[1].as_mv); // Search for best switchable filter by checking the variance of // pred error irrespective of whether the filter will be used for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; if (cm->interp_filter != BILINEAR) { if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { best_filter = EIGHTTAP; } else if (best_filter == SWITCHABLE) { int newbest; int tmp_rate_sum = 0; int64_t tmp_dist_sum = 0; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { int j; int64_t rs_rd; int tmp_skip_sb = 0; int64_t tmp_skip_sse = INT64_MAX; mi->interp_filter = i; rs = vp9_get_switchable_rate(cpi, xd); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); if (i > 0 && intpel_mv) { rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); filter_cache[i] = rd; filter_cache[SWITCHABLE_FILTERS] = VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); if (cm->interp_filter == SWITCHABLE) rd += rs_rd; *mask_filter = VPXMAX(*mask_filter, rd); } else { int rate_sum = 0; int64_t dist_sum = 0; if (i > 0 && cpi->sf.adaptive_interp_filter_search && (cpi->sf.interp_filter_search_mask & (1 << i))) { rate_sum = INT_MAX; dist_sum = INT64_MAX; continue; } if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) || (cm->interp_filter != SWITCHABLE && (cm->interp_filter == mi->interp_filter || (i == 0 && intpel_mv)))) { restore_dst_buf(xd, orig_dst, orig_dst_stride); } else { for (j = 0; j < MAX_MB_PLANE; j++) { xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; xd->plane[j].dst.stride = 64; } } vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, &tmp_skip_sb, &tmp_skip_sse); rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); filter_cache[i] = rd; filter_cache[SWITCHABLE_FILTERS] = VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); if (cm->interp_filter == SWITCHABLE) rd += rs_rd; *mask_filter = VPXMAX(*mask_filter, rd); if (i == 0 && intpel_mv) { tmp_rate_sum = rate_sum; tmp_dist_sum = dist_sum; } } if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { if (rd / 2 > ref_best_rd) { restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } } newbest = i == 0 || rd < best_rd; if (newbest) { best_rd = rd; best_filter = mi->interp_filter; if (cm->interp_filter == SWITCHABLE && i && !intpel_mv) best_needs_copy = !best_needs_copy; } if ((cm->interp_filter == SWITCHABLE && newbest) || (cm->interp_filter != SWITCHABLE && cm->interp_filter == mi->interp_filter)) { pred_exists = 1; tmp_rd = best_rd; skip_txfm_sb = tmp_skip_sb; skip_sse_sb = tmp_skip_sse; memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); memcpy(bsse, x->bsse, sizeof(bsse)); } } restore_dst_buf(xd, orig_dst, orig_dst_stride); } } // Set the appropriate filter mi->interp_filter = cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter; rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0; if (pred_exists) { if (best_needs_copy) { // again temporarily set the buffers to local memory to prevent a memcpy for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; xd->plane[i].dst.stride = 64; } } rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0); } else { int tmp_rate; int64_t tmp_dist; // Handles the special case when a filter that is not in the // switchable list (ex. bilinear) is indicated at the frame level, or // skip condition holds. vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb, &skip_sse_sb); rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); memcpy(bsse, x->bsse, sizeof(bsse)); } if (!is_comp_pred) single_filter[this_mode][refs[0]] = mi->interp_filter; if (cpi->sf.adaptive_mode_search) if (is_comp_pred) if (single_skippable[this_mode][refs[0]] && single_skippable[this_mode][refs[1]]) memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm)); if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { // if current pred_error modeled rd is substantially more than the best // so far, do not bother doing full rd if (rd / 2 > ref_best_rd) { restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } } if (cm->interp_filter == SWITCHABLE) *rate2 += rs; memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm)); memcpy(x->bsse, bsse, sizeof(bsse)); if (!skip_txfm_sb || xd->lossless) { int skippable_y, skippable_uv; int64_t sseuv = INT64_MAX; int64_t rdcosty = INT64_MAX; // Y cost and distortion vp9_subtract_plane(x, bsize, 0); super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, ref_best_rd, recon); if (*rate_y == INT_MAX) { *rate2 = INT_MAX; *distortion = INT64_MAX; restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } *rate2 += *rate_y; *distortion += distortion_y; rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, &sseuv, bsize, ref_best_rd - rdcosty)) { *rate2 = INT_MAX; *distortion = INT64_MAX; restore_dst_buf(xd, orig_dst, orig_dst_stride); return INT64_MAX; } *psse += sseuv; *rate2 += *rate_uv; *distortion += distortion_uv; *skippable = skippable_y && skippable_uv; } else { x->skip = 1; *disable_skip = 1; // The cost of skip bit needs to be added. *rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); *distortion = skip_sse_sb; } if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable; restore_dst_buf(xd, orig_dst, orig_dst_stride); return 0; // The rate-distortion cost will be re-calculated by caller. } #endif // !CONFIG_REALTIME_ONLY void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; struct macroblockd_plane *const pd = xd->plane; int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; int y_skip = 0, uv_skip = 0; int64_t dist_y = 0, dist_uv = 0; TX_SIZE max_uv_tx_size; x->skip_encode = 0; ctx->skip = 0; xd->mi[0]->ref_frame[0] = INTRA_FRAME; xd->mi[0]->ref_frame[1] = NONE; // Initialize interp_filter here so we do not have to check for inter block // modes in get_pred_context_switchable_interp() xd->mi[0]->interp_filter = SWITCHABLE_FILTERS; if (bsize >= BLOCK_8X8) { if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, &y_skip, bsize, best_rd) >= best_rd) { rd_cost->rate = INT_MAX; return; } } else { y_skip = 0; if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, best_rd) >= best_rd) { rd_cost->rate = INT_MAX; return; } } max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->tx_size] [pd[1].subsampling_x][pd[1].subsampling_y]; rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv, &uv_skip, VPXMAX(BLOCK_8X8, bsize), max_uv_tx_size); if (y_skip && uv_skip) { rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); rd_cost->dist = dist_y + dist_uv; } else { rd_cost->rate = rate_y + rate_uv + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); rd_cost->dist = dist_y + dist_uv; } ctx->mic = *xd->mi[0]; ctx->mbmi_ext = *x->mbmi_ext; rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); } #if !CONFIG_REALTIME_ONLY // This function is designed to apply a bias or adjustment to an rd value based // on the relative variance of the source and reconstruction. #define LOW_VAR_THRESH 250 #define VAR_MULT 250 static unsigned int max_var_adjust[VP9E_CONTENT_INVALID] = { 16, 16, 250 }; static void rd_variance_adjustment(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *this_rd, struct buf_2d *recon, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME second_ref_frame, PREDICTION_MODE this_mode) { MACROBLOCKD *const xd = &x->e_mbd; unsigned int rec_variance; unsigned int src_variance; unsigned int src_rec_min; unsigned int var_diff = 0; unsigned int var_factor = 0; unsigned int adj_max; unsigned int low_var_thresh = LOW_VAR_THRESH; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; vp9e_tune_content content_type = cpi->oxcf.content; if (*this_rd == INT64_MAX) return; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { rec_variance = vp9_high_get_sby_variance(cpi, recon, bsize, xd->bd); src_variance = vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, xd->bd); } else { rec_variance = vp9_get_sby_variance(cpi, recon, bsize); src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); } #else rec_variance = vp9_get_sby_variance(cpi, recon, bsize); src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); #endif // CONFIG_VP9_HIGHBITDEPTH // Scale based on area in 8x8 blocks rec_variance /= (bw * bh); src_variance /= (bw * bh); if (content_type == VP9E_CONTENT_FILM) { if (cpi->oxcf.pass == 2) { // Adjust low variance threshold based on estimated group noise enegry. double noise_factor = (double)cpi->twopass.gf_group.group_noise_energy / SECTION_NOISE_DEF; low_var_thresh = (unsigned int)(low_var_thresh * noise_factor); if (ref_frame == INTRA_FRAME) { low_var_thresh *= 2; if (this_mode == DC_PRED) low_var_thresh *= 5; } else if (second_ref_frame > INTRA_FRAME) { low_var_thresh *= 2; } } } else { low_var_thresh = LOW_VAR_THRESH / 2; } // Lower of source (raw per pixel value) and recon variance. Note that // if the source per pixel is 0 then the recon value here will not be per // pixel (see above) so will likely be much larger. src_rec_min = VPXMIN(src_variance, rec_variance); if (src_rec_min > low_var_thresh) return; // We care more when the reconstruction has lower variance so give this case // a stronger weighting. var_diff = (src_variance > rec_variance) ? (src_variance - rec_variance) * 2 : (rec_variance - src_variance) / 2; adj_max = max_var_adjust[content_type]; var_factor = (unsigned int)((int64_t)VAR_MULT * var_diff) / VPXMAX(1, src_variance); var_factor = VPXMIN(adj_max, var_factor); if ((content_type == VP9E_CONTENT_FILM) && ((ref_frame == INTRA_FRAME) || (second_ref_frame > INTRA_FRAME))) { var_factor *= 2; } *this_rd += (*this_rd * var_factor) / 100; (void)xd; } #endif // !CONFIG_REALTIME_ONLY // Do we have an internal image edge (e.g. formatting bars). int vp9_internal_image_edge(VP9_COMP *cpi) { return (cpi->oxcf.pass == 2) && ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); } // Checks to see if a super block is on a horizontal image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) { int top_edge = 0; int bottom_edge = cpi->common.mi_rows; int is_active_h_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { TWO_PASS *twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); bottom_edge = VPXMAX(top_edge, bottom_edge); } if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { is_active_h_edge = 1; } return is_active_h_edge; } // Checks to see if a super block is on a vertical image edge. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) { int left_edge = 0; int right_edge = cpi->common.mi_cols; int is_active_v_edge = 0; // For two pass account for any formatting bars detected. if (cpi->oxcf.pass == 2) { TWO_PASS *twopass = &cpi->twopass; // The inactive region is specified in MBs not mi units. // The image edge is in the following MB row. left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); right_edge = VPXMAX(left_edge, right_edge); } if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { is_active_v_edge = 1; } return is_active_v_edge; } // Checks to see if a super block is at the edge of the active image. // In most cases this is the "real" edge unless there are formatting // bars embedded in the stream. int vp9_active_edge_sb(VP9_COMP *cpi, int mi_row, int mi_col) { return vp9_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) || vp9_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE); } #if !CONFIG_REALTIME_ONLY void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { VP9_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; RD_OPT *const rd_opt = &cpi->rd; SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const struct segmentation *const seg = &cm->seg; PREDICTION_MODE this_mode; MV_REFERENCE_FRAME ref_frame, second_ref_frame; unsigned char segment_id = mi->segment_id; int comp_pred, i, k; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; struct buf_2d yv12_mb[4][MAX_MB_PLANE]; int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES]; int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES]; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; int64_t best_rd = best_rd_so_far; int64_t best_pred_diff[REFERENCE_MODES]; int64_t best_pred_rd[REFERENCE_MODES]; int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; MODE_INFO best_mbmode; int best_mode_skippable = 0; int midx, best_mode_index = -1; unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; vpx_prob comp_mode_p; int64_t best_intra_rd = INT64_MAX; unsigned int best_pred_sse = UINT_MAX; PREDICTION_MODE best_intra_mode = DC_PRED; int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; int64_t dist_uv[TX_SIZES]; int skip_uv[TX_SIZES]; PREDICTION_MODE mode_uv[TX_SIZES]; const int intra_cost_penalty = vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); int best_skip2 = 0; uint8_t ref_frame_skip_mask[2] = { 0, 1 }; uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 }; int mode_skip_start = sf->mode_skip_start + 1; const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; int64_t mode_threshold[MAX_MODES]; int8_t *tile_mode_map = tile_data->mode_map[bsize]; int8_t mode_map[MAX_MODES]; // Maintain mode_map information locally to avoid // lock mechanism involved with reads from // tile_mode_map const int mode_search_skip_flags = sf->mode_search_skip_flags; const int is_rect_partition = num_4x4_blocks_wide_lookup[bsize] != num_4x4_blocks_high_lookup[bsize]; int64_t mask_filter = 0; int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; struct buf_2d *recon; struct buf_2d recon_buf; #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, recon16[64 * 64]); recon_buf.buf = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(recon16) : (uint8_t *)recon16; #else DECLARE_ALIGNED(16, uint8_t, recon8[64 * 64]); recon_buf.buf = recon8; #endif // CONFIG_VP9_HIGHBITDEPTH recon_buf.stride = 64; recon = cpi->oxcf.content == VP9E_CONTENT_FILM ? &recon_buf : 0; vp9_zero(best_mbmode); x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) best_filter_rd[i] = INT64_MAX; for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX; for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; for (i = 0; i < MB_MODE_COUNT; ++i) { for (k = 0; k < MAX_REF_FRAMES; ++k) { single_inter_filter[i][k] = SWITCHABLE; single_skippable[i][k] = 0; } } rd_cost->rate = INT_MAX; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { x->pred_mv_sad[ref_frame] = INT_MAX; if ((cpi->ref_frame_flags & flag_list[ref_frame]) && !(is_rect_partition && (ctx->skip_ref_frame_mask & (1 << ref_frame)))) { assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); } frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; frame_mv[ZEROMV][ref_frame].as_int = 0; } for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { // Skip checking missing references in both single and compound reference // modes. Note that a mode will be skipped if both reference frames // are masked out. ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; } else if (sf->reference_masking) { for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { // Skip fixed mv modes for poor references if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; break; } } } // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; } } // Disable this drop out case if the ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that we end up unable to pick any mode. if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME); ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0) mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0) mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); } } if (cpi->rc.is_src_frame_alt_ref) { if (sf->alt_ref_search_fp) { mode_skip_mask[ALTREF_FRAME] = 0; ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME) & 0xff; ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; } } if (sf->alt_ref_search_fp) if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; if (sf->adaptive_mode_search) { if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && cpi->rc.frames_since_golden >= 3) if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; } if (bsize > sf->max_intra_bsize) { ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); } mode_skip_mask[INTRA_FRAME] |= ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; midx = sf->schedule_mode_search ? mode_skip_start : 0; while (midx > 4) { uint8_t end_pos = 0; for (i = 5; i < midx; ++i) { if (mode_threshold[tile_mode_map[i - 1]] > mode_threshold[tile_mode_map[i]]) { uint8_t tmp = tile_mode_map[i]; tile_mode_map[i] = tile_mode_map[i - 1]; tile_mode_map[i - 1] = tmp; end_pos = i; } } midx = end_pos; } memcpy(mode_map, tile_mode_map, sizeof(mode_map)); for (midx = 0; midx < MAX_MODES; ++midx) { int mode_index = mode_map[midx]; int mode_excluded = 0; int64_t this_rd = INT64_MAX; int disable_skip = 0; int compmode_cost = 0; int rate2 = 0, rate_y = 0, rate_uv = 0; int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; int skippable = 0; int this_skip2 = 0; int64_t total_sse = INT64_MAX; int early_term = 0; this_mode = vp9_mode_order[mode_index].mode; ref_frame = vp9_mode_order[mode_index].ref_frame[0]; second_ref_frame = vp9_mode_order[mode_index].ref_frame[1]; vp9_zero(x->sum_y_eobs); if (is_rect_partition) { if (ctx->skip_ref_frame_mask & (1 << ref_frame)) continue; if (second_ref_frame > 0 && (ctx->skip_ref_frame_mask & (1 << second_ref_frame))) continue; } // Look at the reference frame of the best mode so far and set the // skip mask to look at a subset of the remaining modes. if (midx == mode_skip_start && best_mode_index >= 0) { switch (best_mbmode.ref_frame[0]) { case INTRA_FRAME: break; case LAST_FRAME: ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; break; case GOLDEN_FRAME: ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; break; case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; break; case NONE: case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; } } if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) continue; if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; // Test best rd so far against threshold for trying this mode. if (best_mode_skippable && sf->schedule_mode_search) mode_threshold[mode_index] <<= 1; if (best_rd < mode_threshold[mode_index]) continue; // This is only used in motion vector unit test. if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; if (sf->motion_field_mode_search) { const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize], tile_info->mi_col_end - mi_col); const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize], tile_info->mi_row_end - mi_row); const int bsl = mi_width_log2_lookup[bsize]; int cb_partition_search_ctrl = (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_video_frame)) & 0x1; MODE_INFO *ref_mi; int const_motion = 1; int skip_ref_frame = !cb_partition_search_ctrl; MV_REFERENCE_FRAME rf = NONE; int_mv ref_mv; ref_mv.as_int = INVALID_MV; if ((mi_row - 1) >= tile_info->mi_row_start) { ref_mv = xd->mi[-xd->mi_stride]->mv[0]; rf = xd->mi[-xd->mi_stride]->ref_frame[0]; for (i = 0; i < mi_width; ++i) { ref_mi = xd->mi[-xd->mi_stride + i]; const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && (ref_frame == ref_mi->ref_frame[0]); skip_ref_frame &= (rf == ref_mi->ref_frame[0]); } } if ((mi_col - 1) >= tile_info->mi_col_start) { if (ref_mv.as_int == INVALID_MV) ref_mv = xd->mi[-1]->mv[0]; if (rf == NONE) rf = xd->mi[-1]->ref_frame[0]; for (i = 0; i < mi_height; ++i) { ref_mi = xd->mi[i * xd->mi_stride - 1]; const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && (ref_frame == ref_mi->ref_frame[0]); skip_ref_frame &= (rf == ref_mi->ref_frame[0]); } } if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV) if (rf > INTRA_FRAME) if (ref_frame != rf) continue; if (const_motion) if (this_mode == NEARMV || this_mode == ZEROMV) continue; } comp_pred = second_ref_frame > INTRA_FRAME; if (comp_pred) { if (!cpi->allow_comp_inter_inter) continue; if (cm->ref_frame_sign_bias[ref_frame] == cm->ref_frame_sign_bias[second_ref_frame]) continue; // Skip compound inter modes if ARF is not available. if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; // Do not allow compound prediction if the segment level reference frame // feature is in use as in this case there can only be one reference. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) continue; mode_excluded = cm->reference_mode == SINGLE_REFERENCE; } else { if (ref_frame != INTRA_FRAME) mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; } if (ref_frame == INTRA_FRAME) { if (sf->adaptive_mode_search) if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) continue; if (this_mode != DC_PRED) { // Disable intra modes other than DC_PRED for blocks with low variance // Threshold for intra skipping based on source variance // TODO(debargha): Specialize the threshold for super block sizes const unsigned int skip_intra_var_thresh = (cpi->oxcf.content == VP9E_CONTENT_FILM) ? 0 : 64; if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && x->source_variance < skip_intra_var_thresh) continue; // Only search the oblique modes if the best so far is // one of the neighboring directional modes if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && (this_mode >= D45_PRED && this_mode <= TM_PRED)) { if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) continue; } if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(this_mode, best_intra_mode)) continue; } } } else { const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode, ref_frames)) continue; } mi->mode = this_mode; mi->uv_mode = DC_PRED; mi->ref_frame[0] = ref_frame; mi->ref_frame[1] = second_ref_frame; // Evaluate all sub-pel filters irrespective of whether we can use // them for this frame. mi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; mi->mv[0].as_int = mi->mv[1].as_int = 0; x->skip = 0; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } if (ref_frame == INTRA_FRAME) { TX_SIZE uv_tx; struct macroblockd_plane *const pd = &xd->plane[1]; memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, best_rd, recon); if (rate_y == INT_MAX) continue; uv_tx = uv_txsize_lookup[bsize][mi->tx_size][pd->subsampling_x] [pd->subsampling_y]; if (rate_uv_intra[uv_tx] == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); } rate_uv = rate_uv_tokenonly[uv_tx]; distortion_uv = dist_uv[uv_tx]; skippable = skippable && skip_uv[uv_tx]; mi->uv_mode = mode_uv[uv_tx]; rate2 = rate_y + cpi->mbmode_cost[mi->mode] + rate_uv_intra[uv_tx]; if (this_mode != DC_PRED && this_mode != TM_PRED) rate2 += intra_cost_penalty; distortion2 = distortion_y + distortion_uv; } else { this_rd = handle_inter_mode( cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv, recon, &disable_skip, frame_mv, mi_row, mi_col, single_newmv, single_inter_filter, single_skippable, &total_sse, best_rd, &mask_filter, filter_cache); if (this_rd == INT64_MAX) continue; compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; } // Estimate the reference frame signaling cost and add it // to the rolling cost variable. if (comp_pred) { rate2 += ref_costs_comp[ref_frame]; } else { rate2 += ref_costs_single[ref_frame]; } if (!disable_skip) { const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); const int skip_cost0 = vp9_cost_bit(skip_prob, 0); const int skip_cost1 = vp9_cost_bit(skip_prob, 1); if (skippable) { // Back out the coefficient coding costs rate2 -= (rate_y + rate_uv); // Cost the skip mb case rate2 += skip_cost1; } else if (ref_frame != INTRA_FRAME && !xd->lossless && !cpi->oxcf.sharpness) { if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, distortion2) < RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { // Add in the cost of the no skip flag. rate2 += skip_cost0; } else { // FIXME(rbultje) make this work for splitmv also assert(total_sse >= 0); rate2 += skip_cost1; distortion2 = total_sse; rate2 -= (rate_y + rate_uv); this_skip2 = 1; } } else { // Add in the cost of the no skip flag. rate2 += skip_cost0; } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } if (recon) { // In film mode bias against DC pred and other intra if there is a // significant difference between the variance of the sub blocks in the // the source. Also apply some bias against compound modes which also // tend to blur fine texture such as film grain over time. // // The sub block test here acts in the case where one or more sub // blocks have high relatively variance but others relatively low // variance. Here the high variance sub blocks may push the // total variance for the current block size over the thresholds // used in rd_variance_adjustment() below. if (cpi->oxcf.content == VP9E_CONTENT_FILM) { if (bsize >= BLOCK_16X16) { int min_energy, max_energy; vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy, &max_energy); if (max_energy > min_energy) { if (ref_frame == INTRA_FRAME) { if (this_mode == DC_PRED) this_rd += (this_rd * (max_energy - min_energy)); else this_rd += (this_rd * (max_energy - min_energy)) / 4; } else if (second_ref_frame > INTRA_FRAME) { this_rd += this_rd / 4; } } } } // Apply an adjustment to the rd value based on the similarity of the // source variance and reconstructed variance. rd_variance_adjustment(cpi, x, bsize, &this_rd, recon, ref_frame, second_ref_frame, this_mode); } if (ref_frame == INTRA_FRAME) { // Keep record of best intra rd if (this_rd < best_intra_rd) { best_intra_rd = this_rd; best_intra_mode = mi->mode; } } if (!disable_skip && ref_frame == INTRA_FRAME) { for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); } // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { int max_plane = MAX_MB_PLANE; if (!mode_excluded) { // Note index of best mode so far best_mode_index = mode_index; if (ref_frame == INTRA_FRAME) { /* required for left and above block mv */ mi->mv[0].as_int = 0; max_plane = 1; // Initialize interp_filter here so we do not have to check for // inter block modes in get_pred_context_switchable_interp() mi->interp_filter = SWITCHABLE_FILTERS; } else { best_pred_sse = x->pred_sse[ref_frame]; } rd_cost->rate = rate2; rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; best_rd = this_rd; best_mbmode = *mi; best_skip2 = this_skip2; best_mode_skippable = skippable; if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mi->tx_size], sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); ctx->sum_y_eobs = x->sum_y_eobs[mi->tx_size]; // TODO(debargha): enhance this test with a better distortion prediction // based on qp, activity mask and history if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) && (mode_index > MIN_EARLY_TERM_INDEX)) { int qstep = xd->plane[0].dequant[1]; // TODO(debargha): Enhance this by specializing for each mode_index int scale = 4; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { qstep >>= (xd->bd - 8); } #endif // CONFIG_VP9_HIGHBITDEPTH if (x->source_variance < UINT_MAX) { const int var_adjust = (x->source_variance < 16); scale -= var_adjust; } if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { early_term = 1; } } } } /* keep record of best compound/single-only prediction */ if (!disable_skip && ref_frame != INTRA_FRAME) { int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; if (cm->reference_mode == REFERENCE_MODE_SELECT) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (!comp_pred) { if (single_rd < best_pred_rd[SINGLE_REFERENCE]) best_pred_rd[SINGLE_REFERENCE] = single_rd; } else { if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) best_pred_rd[COMPOUND_REFERENCE] = single_rd; } if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; /* keep record of best filter type */ if (!mode_excluded && cm->interp_filter != BILINEAR) { int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS : cm->interp_filter]; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { int64_t adj_rd; if (ref == INT64_MAX) adj_rd = 0; else if (filter_cache[i] == INT64_MAX) // when early termination is triggered, the encoder does not have // access to the rate-distortion cost. it only knows that the cost // should be above the maximum valid value. hence it takes the known // maximum plus an arbitrary constant as the rate-distortion cost. adj_rd = mask_filter - ref + 10; else adj_rd = filter_cache[i] - ref; adj_rd += this_rd; best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); } } } if (early_term) break; if (x->skip && !comp_pred) break; } // The inter modes' rate costs are not calculated precisely in some cases. // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and // ZEROMV. Here, checks are added for those cases, and the mode decisions // are corrected. if (best_mbmode.mode == NEWMV) { const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], best_mbmode.ref_frame[1] }; int comp_pred_mode = refs[1] > INTRA_FRAME; if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && ((comp_pred_mode && frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || !comp_pred_mode)) best_mbmode.mode = NEARESTMV; else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && ((comp_pred_mode && frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || !comp_pred_mode)) best_mbmode.mode = NEARMV; else if (best_mbmode.mv[0].as_int == 0 && ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || !comp_pred_mode)) best_mbmode.mode = ZEROMV; } if (best_mode_index < 0 || best_rd >= best_rd_so_far) { // If adaptive interp filter is enabled, then the current leaf node of 8x8 // data is needed for sub8x8. Hence preserve the context. #if CONFIG_CONSISTENT_RECODE if (bsize == BLOCK_8X8) ctx->mic = *xd->mi[0]; #else if (cpi->row_mt && bsize == BLOCK_8X8) ctx->mic = *xd->mi[0]; #endif rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } // If we used an estimate for the uv intra rd in the loop above... if (sf->use_uv_intra_rd_estimate) { // Do Intra UV best rd mode selection if best mode choice above was intra. if (best_mbmode.ref_frame[0] == INTRA_FRAME) { TX_SIZE uv_tx_size; *mi = best_mbmode; uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size], &rate_uv_tokenonly[uv_tx_size], &dist_uv[uv_tx_size], &skip_uv[uv_tx_size], bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, uv_tx_size); } } assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter) || !is_inter_block(&best_mbmode)); if (!cpi->rc.is_src_frame_alt_ref) vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, bsize, best_mode_index); // macroblock modes *mi = best_mbmode; x->skip |= best_skip2; for (i = 0; i < REFERENCE_MODES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } if (!x->skip) { for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { if (best_filter_rd[i] == INT64_MAX) best_filter_diff[i] = 0; else best_filter_diff[i] = best_rd - best_filter_rd[i]; } if (cm->interp_filter == SWITCHABLE) assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); } else { vp9_zero(best_filter_diff); } // TODO(yunqingwang): Moving this line in front of the above best_filter_diff // updating code causes PSNR loss. Need to figure out the confliction. x->skip |= best_mode_skippable; if (!x->skip && !x->select_tx_size) { int has_high_freq_coeff = 0; int plane; int max_plane = is_inter_block(xd->mi[0]) ? MAX_MB_PLANE : 1; for (plane = 0; plane < max_plane; ++plane) { x->plane[plane].eobs = ctx->eobs_pbuf[plane][1]; has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); } for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) { x->plane[plane].eobs = ctx->eobs_pbuf[plane][2]; has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); } best_mode_skippable |= !has_high_freq_coeff; } assert(best_mode_index >= 0); store_coding_context(x, ctx, best_mode_index, best_pred_diff, best_filter_diff, best_mode_skippable); } void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; unsigned char segment_id = mi->segment_id; const int comp_pred = 0; int i; int64_t best_pred_diff[REFERENCE_MODES]; int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; vpx_prob comp_mode_p; INTERP_FILTER best_filter = SWITCHABLE; int64_t this_rd = INT64_MAX; int rate2 = 0; const int64_t distortion2 = 0; x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; rd_cost->rate = INT_MAX; assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); mi->mode = ZEROMV; mi->uv_mode = DC_PRED; mi->ref_frame[0] = LAST_FRAME; mi->ref_frame[1] = NONE; mi->mv[0].as_int = 0; x->skip = 1; ctx->sum_y_eobs = 0; if (cm->interp_filter != BILINEAR) { best_filter = EIGHTTAP; if (cm->interp_filter == SWITCHABLE && x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { int rs; int best_rs = INT_MAX; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { mi->interp_filter = i; rs = vp9_get_switchable_rate(cpi, xd); if (rs < best_rs) { best_rs = rs; best_filter = mi->interp_filter; } } } } // Set the appropriate filter if (cm->interp_filter == SWITCHABLE) { mi->interp_filter = best_filter; rate2 += vp9_get_switchable_rate(cpi, xd); } else { mi->interp_filter = cm->interp_filter; } if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += vp9_cost_bit(comp_mode_p, comp_pred); // Estimate the reference frame signaling cost and add it // to the rolling cost variable. rate2 += ref_costs_single[LAST_FRAME]; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); rd_cost->rate = rate2; rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; if (this_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == mi->interp_filter)); vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); vp9_zero(best_pred_diff); vp9_zero(best_filter_diff); if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE); store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, best_filter_diff, 0); } void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, int mi_row, int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { VP9_COMMON *const cm = &cpi->common; RD_OPT *const rd_opt = &cpi->rd; SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mi = xd->mi[0]; const struct segmentation *const seg = &cm->seg; MV_REFERENCE_FRAME ref_frame, second_ref_frame; unsigned char segment_id = mi->segment_id; int comp_pred, i; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; struct buf_2d yv12_mb[4][MAX_MB_PLANE]; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; int64_t best_rd = best_rd_so_far; int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise int64_t best_pred_diff[REFERENCE_MODES]; int64_t best_pred_rd[REFERENCE_MODES]; int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; MODE_INFO best_mbmode; int ref_index, best_ref_index = 0; unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; vpx_prob comp_mode_p; INTERP_FILTER tmp_best_filter = SWITCHABLE; int rate_uv_intra, rate_uv_tokenonly; int64_t dist_uv; int skip_uv; PREDICTION_MODE mode_uv = DC_PRED; const int intra_cost_penalty = vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); int_mv seg_mvs[4][MAX_REF_FRAMES]; b_mode_info best_bmodes[4]; int best_skip2 = 0; int ref_frame_skip_mask[2] = { 0 }; int64_t mask_filter = 0; int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; int internal_active_edge = vp9_active_edge_sb(cpi, mi_row, mi_col) && vp9_internal_image_edge(cpi); const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; memset(x->zcoeff_blk[TX_4X4], 0, 4); vp9_zero(best_mbmode); for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; for (i = 0; i < 4; i++) { int j; for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV; } estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) best_filter_rd[i] = INT64_MAX; rate_uv_intra = INT_MAX; rd_cost->rate = INT_MAX; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (cpi->ref_frame_flags & flag_list[ref_frame]) { setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); } else { ref_frame_skip_mask[0] |= (1 << ref_frame); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; } frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; frame_mv[ZEROMV][ref_frame].as_int = 0; } for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { int mode_excluded = 0; int64_t this_rd = INT64_MAX; int disable_skip = 0; int compmode_cost = 0; int rate2 = 0, rate_y = 0, rate_uv = 0; int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; int skippable = 0; int i; int this_skip2 = 0; int64_t total_sse = INT_MAX; int early_term = 0; struct buf_2d backup_yv12[2][MAX_MB_PLANE]; ref_frame = vp9_ref_order[ref_index].ref_frame[0]; second_ref_frame = vp9_ref_order[ref_index].ref_frame[1]; vp9_zero(x->sum_y_eobs); #if CONFIG_BETTER_HW_COMPATIBILITY // forbid 8X4 and 4X8 partitions if any reference frame is scaled. if (bsize == BLOCK_8X4 || bsize == BLOCK_4X8) { int ref_scaled = ref_frame > INTRA_FRAME && vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf); if (second_ref_frame > INTRA_FRAME) ref_scaled += vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf); if (ref_scaled) continue; } #endif // Look at the reference frame of the best mode so far and set the // skip mask to look at a subset of the remaining modes. if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { if (ref_index == 3) { switch (best_mbmode.ref_frame[0]) { case INTRA_FRAME: break; case LAST_FRAME: ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; case GOLDEN_FRAME: ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME); ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; break; case ALTREF_FRAME: ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME); break; case NONE: case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; } } } if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) continue; // Test best rd so far against threshold for trying this mode. if (!internal_active_edge && rd_less_than_thresh(best_rd, rd_opt->threshes[segment_id][bsize][ref_index], &rd_thresh_freq_fact[ref_index])) continue; // This is only used in motion vector unit test. if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; comp_pred = second_ref_frame > INTRA_FRAME; if (comp_pred) { if (!cpi->allow_comp_inter_inter) continue; if (cm->ref_frame_sign_bias[ref_frame] == cm->ref_frame_sign_bias[second_ref_frame]) continue; if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; // Do not allow compound prediction if the segment level reference frame // feature is in use as in this case there can only be one reference. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && best_mbmode.ref_frame[0] == INTRA_FRAME) continue; } if (comp_pred) mode_excluded = cm->reference_mode == SINGLE_REFERENCE; else if (ref_frame != INTRA_FRAME) mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { continue; // Disable this drop out case if the ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that we end up unable to pick any mode. } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) continue; } mi->tx_size = TX_4X4; mi->uv_mode = DC_PRED; mi->ref_frame[0] = ref_frame; mi->ref_frame[1] = second_ref_frame; // Evaluate all sub-pel filters irrespective of whether we can use // them for this frame. mi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; x->skip = 0; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } if (ref_frame == INTRA_FRAME) { int rate; if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, best_rd) >= best_rd) continue; rate2 += rate; rate2 += intra_cost_penalty; distortion2 += distortion_y; if (rate_uv_intra == INT_MAX) { choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra, &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv); } rate2 += rate_uv_intra; rate_uv = rate_uv_tokenonly; distortion2 += dist_uv; distortion_uv = dist_uv; mi->uv_mode = mode_uv; } else { int rate; int64_t distortion; int64_t this_rd_thresh; int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; int tmp_best_skippable = 0; int switchable_filter_index; int_mv *second_ref = comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; b_mode_info tmp_best_bmodes[16]; MODE_INFO tmp_best_mbmode; BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; int pred_exists = 0; int uv_skippable; YV12_BUFFER_CONFIG *scaled_ref_frame[2] = { NULL, NULL }; int ref; for (ref = 0; ref < 2; ++ref) { scaled_ref_frame[ref] = mi->ref_frame[ref] > INTRA_FRAME ? vp9_get_scaled_ref_frame(cpi, mi->ref_frame[ref]) : NULL; if (scaled_ref_frame[ref]) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[ref][i] = xd->plane[i].pre[ref]; vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, NULL); } } this_rd_thresh = (ref_frame == LAST_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_LAST] : rd_opt->threshes[segment_id][bsize][THR_ALTR]; this_rd_thresh = (ref_frame == GOLDEN_FRAME) ? rd_opt->threshes[segment_id][bsize][THR_GOLD] : this_rd_thresh; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; if (cm->interp_filter != BILINEAR) { tmp_best_filter = EIGHTTAP; if (x->source_variance < sf->disable_filter_search_var_thresh) { tmp_best_filter = EIGHTTAP; } else if (sf->adaptive_pred_interp_filter == 1 && ctx->pred_interp_filter < SWITCHABLE) { tmp_best_filter = ctx->pred_interp_filter; } else if (sf->adaptive_pred_interp_filter == 2) { tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE ? ctx->pred_interp_filter : 0; } else { for (switchable_filter_index = 0; switchable_filter_index < SWITCHABLE_FILTERS; ++switchable_filter_index) { int newbest, rs; int64_t rs_rd; MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; mi->interp_filter = switchable_filter_index; tmp_rd = rd_pick_best_sub8x8_mode( cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index, mi_row, mi_col); if (tmp_rd == INT64_MAX) continue; rs = vp9_get_switchable_rate(cpi, xd); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); filter_cache[switchable_filter_index] = tmp_rd; filter_cache[SWITCHABLE_FILTERS] = VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd); if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd; mask_filter = VPXMAX(mask_filter, tmp_rd); newbest = (tmp_rd < tmp_best_rd); if (newbest) { tmp_best_filter = mi->interp_filter; tmp_best_rd = tmp_rd; } if ((newbest && cm->interp_filter == SWITCHABLE) || (mi->interp_filter == cm->interp_filter && cm->interp_filter != SWITCHABLE)) { tmp_best_rdu = tmp_rd; tmp_best_rate = rate; tmp_best_ratey = rate_y; tmp_best_distortion = distortion; tmp_best_sse = total_sse; tmp_best_skippable = skippable; tmp_best_mbmode = *mi; x->sum_y_eobs[TX_4X4] = 0; for (i = 0; i < 4; i++) { tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i]; } pred_exists = 1; if (switchable_filter_index == 0 && sf->use_rd_breakout && best_rd < INT64_MAX) { if (tmp_best_rdu / 2 > best_rd) { // skip searching the other filters if the first is // already substantially larger than the best so far tmp_best_filter = mi->interp_filter; tmp_best_rdu = INT64_MAX; break; } } } } // switchable_filter_index loop } } if (tmp_best_rdu == INT64_MAX && pred_exists) continue; mi->interp_filter = (cm->interp_filter == SWITCHABLE ? tmp_best_filter : cm->interp_filter); if (!pred_exists) { // Handles the special case when a filter that is not in the // switchable list (bilinear, 6-tap) is indicated at the frame level tmp_rd = rd_pick_best_sub8x8_mode( cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col); if (tmp_rd == INT64_MAX) continue; x->sum_y_eobs[TX_4X4] = 0; for (i = 0; i < 4; i++) { x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i]; } } else { total_sse = tmp_best_sse; rate = tmp_best_rate; rate_y = tmp_best_ratey; distortion = tmp_best_distortion; skippable = tmp_best_skippable; *mi = tmp_best_mbmode; for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; } rate2 += rate; distortion2 += distortion; if (cm->interp_filter == SWITCHABLE) rate2 += vp9_get_switchable_rate(cpi, xd); if (!mode_excluded) mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE : cm->reference_mode == COMPOUND_REFERENCE; compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); tmp_best_rdu = best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), RDCOST(x->rdmult, x->rddiv, 0, total_sse)); if (tmp_best_rdu > 0) { // If even the 'Y' rd value of split is higher than best so far // then dont bother looking at UV vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8); memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, &uv_sse, BLOCK_8X8, tmp_best_rdu)) { for (ref = 0; ref < 2; ++ref) { if (scaled_ref_frame[ref]) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[ref] = backup_yv12[ref][i]; } } continue; } rate2 += rate_uv; distortion2 += distortion_uv; skippable = skippable && uv_skippable; total_sse += uv_sse; } for (ref = 0; ref < 2; ++ref) { if (scaled_ref_frame[ref]) { // Restore the prediction frame pointers to their unscaled versions. int i; for (i = 0; i < MAX_MB_PLANE; ++i) xd->plane[i].pre[ref] = backup_yv12[ref][i]; } } } if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; // Estimate the reference frame signaling cost and add it // to the rolling cost variable. if (second_ref_frame > INTRA_FRAME) { rate2 += ref_costs_comp[ref_frame]; } else { rate2 += ref_costs_single[ref_frame]; } if (!disable_skip) { const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); const int skip_cost0 = vp9_cost_bit(skip_prob, 0); const int skip_cost1 = vp9_cost_bit(skip_prob, 1); // Skip is never coded at the segment level for sub8x8 blocks and instead // always coded in the bitstream at the mode info level. if (ref_frame != INTRA_FRAME && !xd->lossless) { if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, distortion2) < RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { // Add in the cost of the no skip flag. rate2 += skip_cost0; } else { // FIXME(rbultje) make this work for splitmv also rate2 += skip_cost1; distortion2 = total_sse; assert(total_sse >= 0); rate2 -= (rate_y + rate_uv); rate_y = 0; rate_uv = 0; this_skip2 = 1; } } else { // Add in the cost of the no skip flag. rate2 += skip_cost0; } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } if (!disable_skip && ref_frame == INTRA_FRAME) { for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); } // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { if (!mode_excluded) { int max_plane = MAX_MB_PLANE; // Note index of best mode so far best_ref_index = ref_index; if (ref_frame == INTRA_FRAME) { /* required for left and above block mv */ mi->mv[0].as_int = 0; max_plane = 1; // Initialize interp_filter here so we do not have to check for // inter block modes in get_pred_context_switchable_interp() mi->interp_filter = SWITCHABLE_FILTERS; } rd_cost->rate = rate2; rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; best_rd = this_rd; best_yrd = best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); best_mbmode = *mi; best_skip2 = this_skip2; if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4], sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); ctx->sum_y_eobs = x->sum_y_eobs[TX_4X4]; for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i]; // TODO(debargha): enhance this test with a better distortion prediction // based on qp, activity mask and history if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) && (ref_index > MIN_EARLY_TERM_INDEX)) { int qstep = xd->plane[0].dequant[1]; // TODO(debargha): Enhance this by specializing for each mode_index int scale = 4; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { qstep >>= (xd->bd - 8); } #endif // CONFIG_VP9_HIGHBITDEPTH if (x->source_variance < UINT_MAX) { const int var_adjust = (x->source_variance < 16); scale -= var_adjust; } if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { early_term = 1; } } } } /* keep record of best compound/single-only prediction */ if (!disable_skip && ref_frame != INTRA_FRAME) { int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; if (cm->reference_mode == REFERENCE_MODE_SELECT) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) best_pred_rd[SINGLE_REFERENCE] = single_rd; else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) best_pred_rd[COMPOUND_REFERENCE] = single_rd; if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; } /* keep record of best filter type */ if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && cm->interp_filter != BILINEAR) { int64_t ref = filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS : cm->interp_filter]; int64_t adj_rd; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { if (ref == INT64_MAX) adj_rd = 0; else if (filter_cache[i] == INT64_MAX) // when early termination is triggered, the encoder does not have // access to the rate-distortion cost. it only knows that the cost // should be above the maximum valid value. hence it takes the known // maximum plus an arbitrary constant as the rate-distortion cost. adj_rd = mask_filter - ref + 10; else adj_rd = filter_cache[i] - ref; adj_rd += this_rd; best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); } } if (early_term) break; if (x->skip && !comp_pred) break; } if (best_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } // If we used an estimate for the uv intra rd in the loop above... if (sf->use_uv_intra_rd_estimate) { // Do Intra UV best rd mode selection if best mode choice above was intra. if (best_mbmode.ref_frame[0] == INTRA_FRAME) { *mi = best_mbmode; rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, &rate_uv_tokenonly, &dist_uv, &skip_uv, BLOCK_8X8, TX_4X4); } } if (best_rd == INT64_MAX) { rd_cost->rate = INT_MAX; rd_cost->dist = INT64_MAX; rd_cost->rdcost = INT64_MAX; return; } assert((cm->interp_filter == SWITCHABLE) || (cm->interp_filter == best_mbmode.interp_filter) || !is_inter_block(&best_mbmode)); vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, bsize, best_ref_index); // macroblock modes *mi = best_mbmode; x->skip |= best_skip2; if (!is_inter_block(&best_mbmode)) { for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; } else { for (i = 0; i < 4; ++i) memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); mi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; mi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; } // If the second reference does not exist, set the corresponding mv to zero. if (mi->ref_frame[1] == NONE) { mi->mv[1].as_int = 0; for (i = 0; i < 4; ++i) { mi->bmi[i].as_mv[1].as_int = 0; } } for (i = 0; i < REFERENCE_MODES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } if (!x->skip) { for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { if (best_filter_rd[i] == INT64_MAX) best_filter_diff[i] = 0; else best_filter_diff[i] = best_rd - best_filter_rd[i]; } if (cm->interp_filter == SWITCHABLE) assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); } else { vp9_zero(best_filter_diff); } store_coding_context(x, ctx, best_ref_index, best_pred_diff, best_filter_diff, 0); } #endif // !CONFIG_REALTIME_ONLY