ref: 55564969bea20e54fc4775fdd3c5f3471047df97
dir: /vpx_dsp/x86/vpx_subpixel_8t_intrin_ssse3.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <tmmintrin.h> // SSSE3 #include <string.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_dsp/x86/convolve.h" #include "vpx_dsp/x86/convolve_sse2.h" #include "vpx_dsp/x86/convolve_ssse3.h" #include "vpx_dsp/x86/mem_sse2.h" #include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" static INLINE __m128i shuffle_filter_convolve8_8_ssse3( const __m128i *const s, const int16_t *const filter) { __m128i f[4]; shuffle_filter_ssse3(filter, f); return convolve8_8_ssse3(s, f); } // Used by the avx2 implementation. #if ARCH_X86_64 // Use the intrinsics below filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3; filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3; #define vpx_filter_block1d4_h8_ssse3 vpx_filter_block1d4_h8_intrin_ssse3 #define vpx_filter_block1d8_h8_ssse3 vpx_filter_block1d8_h8_intrin_ssse3 #define vpx_filter_block1d8_v8_ssse3 vpx_filter_block1d8_v8_intrin_ssse3 #else // ARCH_X86 // Use the assembly in vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm. filter8_1dfunction vpx_filter_block1d4_h8_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_ssse3; filter8_1dfunction vpx_filter_block1d8_v8_ssse3; #endif #if ARCH_X86_64 void vpx_filter_block1d4_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, shuffle1, shuffle2; __m128i srcRegFilt1, srcRegFilt2; __m128i addFilterReg64, filtersReg, srcReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter into the first lane firstFilters = _mm_shufflelo_epi16(filtersReg, 0); // duplicate only the third 16 bit in the filter into the first lane secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); // duplicate only the seconds 16 bits in the filter into the second lane // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); // duplicate only the forth 16 bits in the filter into the second lane // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); // loading the local filters shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6); shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // sum the results together, saturating only on the final step // the specific order of the additions prevents outranges srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2); // extract the higher half of the register srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8); // add the rounding offset early to avoid another saturated add srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pitch; // save only 4 bytes *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); output_ptr += output_pitch; } } void vpx_filter_block1d8_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { unsigned int i; __m128i f[4], filt[4], s[4]; shuffle_filter_ssse3(filter, f); filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8); filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10); filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12); filt[3] = _mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14); for (i = 0; i < output_height; i++) { const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer s[0] = _mm_shuffle_epi8(srcReg, filt[0]); s[1] = _mm_shuffle_epi8(srcReg, filt[1]); s[2] = _mm_shuffle_epi8(srcReg, filt[2]); s[3] = _mm_shuffle_epi8(srcReg, filt[3]); s[0] = convolve8_8_ssse3(s, f); // shrink to 8 bit each 16 bits s[0] = _mm_packus_epi16(s[0], s[0]); src_ptr += src_pitch; // save only 8 bytes _mm_storel_epi64((__m128i *)&output_ptr[0], s[0]); output_ptr += output_pitch; } } void vpx_filter_block1d8_v8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { unsigned int i; __m128i f[4], s[8], ss[4]; shuffle_filter_ssse3(filter, f); // load the first 7 rows of 8 bytes s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch)); s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch)); s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch)); s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch)); s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch)); s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch)); s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch)); for (i = 0; i < output_height; i++) { // load the last 8 bytes s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch)); // merge the result together ss[0] = _mm_unpacklo_epi8(s[0], s[1]); ss[1] = _mm_unpacklo_epi8(s[2], s[3]); // merge the result together ss[2] = _mm_unpacklo_epi8(s[4], s[5]); ss[3] = _mm_unpacklo_epi8(s[6], s[7]); ss[0] = convolve8_8_ssse3(ss, f); // shrink to 8 bit each 16 bits ss[0] = _mm_packus_epi16(ss[0], ss[0]); src_ptr += src_pitch; // shift down a row s[0] = s[1]; s[1] = s[2]; s[2] = s[3]; s[3] = s[4]; s[4] = s[5]; s[5] = s[6]; s[6] = s[7]; // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]); output_ptr += out_pitch; } } #endif // ARCH_X86_64 static void vpx_filter_block1d16_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will cast the kernel from 16-bit words to 8-bit words, and then extract // the middle four elements of the kernel into two registers in the form // ... k[3] k[2] k[3] k[2] // ... k[5] k[4] k[5] k[4] // Then we shuffle the source into // ... s[1] s[0] s[0] s[-1] // ... s[3] s[2] s[2] s[1] // Calling multiply and add gives us half of the sum. Calling add gives us // first half of the output. Repeat again to get the second half of the // output. Finally we shuffle again to combine the two outputs. __m128i kernel_reg; // Kernel __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding int h; __m128i src_reg, src_reg_shift_0, src_reg_shift_2; __m128i dst_first, dst_second; __m128i tmp_0, tmp_1; __m128i idx_shift_0 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8); __m128i idx_shift_2 = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10); // Start one pixel before as we need tap/2 - 1 = 1 sample from the past src_ptr -= 1; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u)); kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u)); for (h = height; h > 0; --h) { // Load the source src_reg = _mm_loadu_si128((const __m128i *)src_ptr); src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0); src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2); // Partial result for first half tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23); tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45); dst_first = _mm_adds_epi16(tmp_0, tmp_1); // Do again to get the second half of dst // Load the source src_reg = _mm_loadu_si128((const __m128i *)(src_ptr + 8)); src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0); src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2); // Partial result for first half tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23); tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45); dst_second = _mm_adds_epi16(tmp_0, tmp_1); // Round each result dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6); dst_second = mm_round_epi16_sse2(&dst_second, ®_32, 6); // Finally combine to get the final dst dst_first = _mm_packus_epi16(dst_first, dst_second); _mm_store_si128((__m128i *)dst_ptr, dst_first); src_ptr += src_stride; dst_ptr += dst_stride; } } static void vpx_filter_block1d16_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will load two rows of pixels as 8-bit words, rearrange them into the // form // ... s[0,1] s[-1,1] s[0,0] s[-1,0] // ... s[0,9] s[-1,9] s[0,8] s[-1,8] // so that we can call multiply and add with the kernel to get 16-bit words of // the form // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2] // Finally, we can add multiple rows together to get the desired output. // Register for source s[-1:3, :] __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3; // Interleaved rows of the source. lo is first half, hi second __m128i src_reg_m10_lo, src_reg_m10_hi, src_reg_01_lo, src_reg_01_hi; __m128i src_reg_12_lo, src_reg_12_hi, src_reg_23_lo, src_reg_23_hi; __m128i kernel_reg; // Kernel __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used // Result after multiply and add __m128i res_reg_m10_lo, res_reg_01_lo, res_reg_12_lo, res_reg_23_lo; __m128i res_reg_m10_hi, res_reg_01_hi, res_reg_12_hi, res_reg_23_hi; __m128i res_reg_m1012, res_reg_0123; __m128i res_reg_m1012_lo, res_reg_0123_lo, res_reg_m1012_hi, res_reg_0123_hi; const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding // We will compute the result two rows at a time const ptrdiff_t src_stride_unrolled = src_stride << 1; const ptrdiff_t dst_stride_unrolled = dst_stride << 1; int h; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u)); kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u)); // First shuffle the data src_reg_m1 = _mm_loadu_si128((const __m128i *)src_ptr); src_reg_0 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride)); src_reg_m10_lo = _mm_unpacklo_epi8(src_reg_m1, src_reg_0); src_reg_m10_hi = _mm_unpackhi_epi8(src_reg_m1, src_reg_0); // More shuffling src_reg_1 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 2)); src_reg_01_lo = _mm_unpacklo_epi8(src_reg_0, src_reg_1); src_reg_01_hi = _mm_unpackhi_epi8(src_reg_0, src_reg_1); for (h = height; h > 1; h -= 2) { src_reg_2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 3)); src_reg_12_lo = _mm_unpacklo_epi8(src_reg_1, src_reg_2); src_reg_12_hi = _mm_unpackhi_epi8(src_reg_1, src_reg_2); src_reg_3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_stride * 4)); src_reg_23_lo = _mm_unpacklo_epi8(src_reg_2, src_reg_3); src_reg_23_hi = _mm_unpackhi_epi8(src_reg_2, src_reg_3); // Partial output from first half res_reg_m10_lo = _mm_maddubs_epi16(src_reg_m10_lo, kernel_reg_23); res_reg_01_lo = _mm_maddubs_epi16(src_reg_01_lo, kernel_reg_23); res_reg_12_lo = _mm_maddubs_epi16(src_reg_12_lo, kernel_reg_45); res_reg_23_lo = _mm_maddubs_epi16(src_reg_23_lo, kernel_reg_45); // Add to get first half of the results res_reg_m1012_lo = _mm_adds_epi16(res_reg_m10_lo, res_reg_12_lo); res_reg_0123_lo = _mm_adds_epi16(res_reg_01_lo, res_reg_23_lo); // Partial output for second half res_reg_m10_hi = _mm_maddubs_epi16(src_reg_m10_hi, kernel_reg_23); res_reg_01_hi = _mm_maddubs_epi16(src_reg_01_hi, kernel_reg_23); res_reg_12_hi = _mm_maddubs_epi16(src_reg_12_hi, kernel_reg_45); res_reg_23_hi = _mm_maddubs_epi16(src_reg_23_hi, kernel_reg_45); // Second half of the results res_reg_m1012_hi = _mm_adds_epi16(res_reg_m10_hi, res_reg_12_hi); res_reg_0123_hi = _mm_adds_epi16(res_reg_01_hi, res_reg_23_hi); // Round the words res_reg_m1012_lo = mm_round_epi16_sse2(&res_reg_m1012_lo, ®_32, 6); res_reg_0123_lo = mm_round_epi16_sse2(&res_reg_0123_lo, ®_32, 6); res_reg_m1012_hi = mm_round_epi16_sse2(&res_reg_m1012_hi, ®_32, 6); res_reg_0123_hi = mm_round_epi16_sse2(&res_reg_0123_hi, ®_32, 6); // Combine to get the result res_reg_m1012 = _mm_packus_epi16(res_reg_m1012_lo, res_reg_m1012_hi); res_reg_0123 = _mm_packus_epi16(res_reg_0123_lo, res_reg_0123_hi); _mm_store_si128((__m128i *)dst_ptr, res_reg_m1012); _mm_store_si128((__m128i *)(dst_ptr + dst_stride), res_reg_0123); // Update the source by two rows src_ptr += src_stride_unrolled; dst_ptr += dst_stride_unrolled; src_reg_m10_lo = src_reg_12_lo; src_reg_m10_hi = src_reg_12_hi; src_reg_01_lo = src_reg_23_lo; src_reg_01_hi = src_reg_23_hi; src_reg_1 = src_reg_3; } } static void vpx_filter_block1d8_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will cast the kernel from 16-bit words to 8-bit words, and then extract // the middle four elements of the kernel into two registers in the form // ... k[3] k[2] k[3] k[2] // ... k[5] k[4] k[5] k[4] // Then we shuffle the source into // ... s[1] s[0] s[0] s[-1] // ... s[3] s[2] s[2] s[1] // Calling multiply and add gives us half of the sum. Calling add gives us // first half of the output. Repeat again to get the second half of the // output. Finally we shuffle again to combine the two outputs. __m128i kernel_reg; // Kernel __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding int h; __m128i src_reg, src_reg_shift_0, src_reg_shift_2; __m128i dst_first; __m128i tmp_0, tmp_1; __m128i idx_shift_0 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8); __m128i idx_shift_2 = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10); // Start one pixel before as we need tap/2 - 1 = 1 sample from the past src_ptr -= 1; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u)); kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u)); for (h = height; h > 0; --h) { // Load the source src_reg = _mm_loadu_si128((const __m128i *)src_ptr); src_reg_shift_0 = _mm_shuffle_epi8(src_reg, idx_shift_0); src_reg_shift_2 = _mm_shuffle_epi8(src_reg, idx_shift_2); // Get the result tmp_0 = _mm_maddubs_epi16(src_reg_shift_0, kernel_reg_23); tmp_1 = _mm_maddubs_epi16(src_reg_shift_2, kernel_reg_45); dst_first = _mm_adds_epi16(tmp_0, tmp_1); // Round round result dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6); // Pack to 8-bits dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128()); _mm_storel_epi64((__m128i *)dst_ptr, dst_first); src_ptr += src_stride; dst_ptr += dst_stride; } } static void vpx_filter_block1d8_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will load two rows of pixels as 8-bit words, rearrange them into the // form // ... s[0,1] s[-1,1] s[0,0] s[-1,0] // so that we can call multiply and add with the kernel to get 16-bit words of // the form // ... s[0,1]k[3]+s[-1,1]k[2] s[0,0]k[3]+s[-1,0]k[2] // Finally, we can add multiple rows together to get the desired output. // Register for source s[-1:3, :] __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3; // Interleaved rows of the source. lo is first half, hi second __m128i src_reg_m10, src_reg_01; __m128i src_reg_12, src_reg_23; __m128i kernel_reg; // Kernel __m128i kernel_reg_23, kernel_reg_45; // Segments of the kernel used // Result after multiply and add __m128i res_reg_m10, res_reg_01, res_reg_12, res_reg_23; __m128i res_reg_m1012, res_reg_0123; const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding // We will compute the result two rows at a time const ptrdiff_t src_stride_unrolled = src_stride << 1; const ptrdiff_t dst_stride_unrolled = dst_stride << 1; int h; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg_23 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0302u)); kernel_reg_45 = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi16(0x0504u)); // First shuffle the data src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr); src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride)); src_reg_m10 = _mm_unpacklo_epi8(src_reg_m1, src_reg_0); // More shuffling src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2)); src_reg_01 = _mm_unpacklo_epi8(src_reg_0, src_reg_1); for (h = height; h > 1; h -= 2) { src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3)); src_reg_12 = _mm_unpacklo_epi8(src_reg_1, src_reg_2); src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4)); src_reg_23 = _mm_unpacklo_epi8(src_reg_2, src_reg_3); // Partial output res_reg_m10 = _mm_maddubs_epi16(src_reg_m10, kernel_reg_23); res_reg_01 = _mm_maddubs_epi16(src_reg_01, kernel_reg_23); res_reg_12 = _mm_maddubs_epi16(src_reg_12, kernel_reg_45); res_reg_23 = _mm_maddubs_epi16(src_reg_23, kernel_reg_45); // Add to get entire output res_reg_m1012 = _mm_adds_epi16(res_reg_m10, res_reg_12); res_reg_0123 = _mm_adds_epi16(res_reg_01, res_reg_23); // Round the words res_reg_m1012 = mm_round_epi16_sse2(&res_reg_m1012, ®_32, 6); res_reg_0123 = mm_round_epi16_sse2(&res_reg_0123, ®_32, 6); // Pack from 16-bit to 8-bit res_reg_m1012 = _mm_packus_epi16(res_reg_m1012, _mm_setzero_si128()); res_reg_0123 = _mm_packus_epi16(res_reg_0123, _mm_setzero_si128()); _mm_storel_epi64((__m128i *)dst_ptr, res_reg_m1012); _mm_storel_epi64((__m128i *)(dst_ptr + dst_stride), res_reg_0123); // Update the source by two rows src_ptr += src_stride_unrolled; dst_ptr += dst_stride_unrolled; src_reg_m10 = src_reg_12; src_reg_01 = src_reg_23; src_reg_1 = src_reg_3; } } static void vpx_filter_block1d4_h4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will cast the kernel from 16-bit words to 8-bit words, and then extract // the middle four elements of the kernel into a single register in the form // k[5:2] k[5:2] k[5:2] k[5:2] // Then we shuffle the source into // s[5:2] s[4:1] s[3:0] s[2:-1] // Calling multiply and add gives us half of the sum next to each other. // Calling horizontal add then gives us the output. __m128i kernel_reg; // Kernel const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding int h; __m128i src_reg, src_reg_shuf; __m128i dst_first; __m128i shuf_idx = _mm_setr_epi8(0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6); // Start one pixel before as we need tap/2 - 1 = 1 sample from the past src_ptr -= 1; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u)); for (h = height; h > 0; --h) { // Load the source src_reg = _mm_loadu_si128((const __m128i *)src_ptr); src_reg_shuf = _mm_shuffle_epi8(src_reg, shuf_idx); // Get the result dst_first = _mm_maddubs_epi16(src_reg_shuf, kernel_reg); dst_first = _mm_hadds_epi16(dst_first, _mm_setzero_si128()); // Round result dst_first = mm_round_epi16_sse2(&dst_first, ®_32, 6); // Pack to 8-bits dst_first = _mm_packus_epi16(dst_first, _mm_setzero_si128()); *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(dst_first); src_ptr += src_stride; dst_ptr += dst_stride; } } static void vpx_filter_block1d4_v4_ssse3(const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, ptrdiff_t dst_stride, uint32_t height, const int16_t *kernel) { // We will load two rows of pixels as 8-bit words, rearrange them into the // form // ... s[2,0] s[1,0] s[0,0] s[-1,0] // so that we can call multiply and add with the kernel partial output. Then // we can call horizontal add to get the output. // Finally, we can add multiple rows together to get the desired output. // This is done two rows at a time // Register for source s[-1:3, :] __m128i src_reg_m1, src_reg_0, src_reg_1, src_reg_2, src_reg_3; // Interleaved rows of the source. __m128i src_reg_m10, src_reg_01; __m128i src_reg_12, src_reg_23; __m128i src_reg_m1001, src_reg_1223; __m128i src_reg_m1012_1023_lo, src_reg_m1012_1023_hi; __m128i kernel_reg; // Kernel // Result after multiply and add __m128i reg_0, reg_1; const __m128i reg_32 = _mm_set1_epi16(32); // Used for rounding // We will compute the result two rows at a time const ptrdiff_t src_stride_unrolled = src_stride << 1; const ptrdiff_t dst_stride_unrolled = dst_stride << 1; int h; // Load Kernel kernel_reg = _mm_loadu_si128((const __m128i *)kernel); kernel_reg = _mm_srai_epi16(kernel_reg, 1); kernel_reg = _mm_packs_epi16(kernel_reg, kernel_reg); kernel_reg = _mm_shuffle_epi8(kernel_reg, _mm_set1_epi32(0x05040302u)); // First shuffle the data src_reg_m1 = _mm_loadl_epi64((const __m128i *)src_ptr); src_reg_0 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride)); src_reg_m10 = _mm_unpacklo_epi32(src_reg_m1, src_reg_0); // More shuffling src_reg_1 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 2)); src_reg_01 = _mm_unpacklo_epi32(src_reg_0, src_reg_1); // Put three rows next to each other src_reg_m1001 = _mm_unpacklo_epi8(src_reg_m10, src_reg_01); for (h = height; h > 1; h -= 2) { src_reg_2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 3)); src_reg_12 = _mm_unpacklo_epi32(src_reg_1, src_reg_2); src_reg_3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_stride * 4)); src_reg_23 = _mm_unpacklo_epi32(src_reg_2, src_reg_3); // Put three rows next to each other src_reg_1223 = _mm_unpacklo_epi8(src_reg_12, src_reg_23); // Put all four rows next to each other src_reg_m1012_1023_lo = _mm_unpacklo_epi16(src_reg_m1001, src_reg_1223); src_reg_m1012_1023_hi = _mm_unpackhi_epi16(src_reg_m1001, src_reg_1223); // Get the results reg_0 = _mm_maddubs_epi16(src_reg_m1012_1023_lo, kernel_reg); reg_1 = _mm_maddubs_epi16(src_reg_m1012_1023_hi, kernel_reg); reg_0 = _mm_hadds_epi16(reg_0, _mm_setzero_si128()); reg_1 = _mm_hadds_epi16(reg_1, _mm_setzero_si128()); // Round the words reg_0 = mm_round_epi16_sse2(®_0, ®_32, 6); reg_1 = mm_round_epi16_sse2(®_1, ®_32, 6); // Pack from 16-bit to 8-bit and put them in the right order reg_0 = _mm_packus_epi16(reg_0, reg_0); reg_1 = _mm_packus_epi16(reg_1, reg_1); // Save the result *((uint32_t *)(dst_ptr)) = _mm_cvtsi128_si32(reg_0); *((uint32_t *)(dst_ptr + dst_stride)) = _mm_cvtsi128_si32(reg_1); // Update the source by two rows src_ptr += src_stride_unrolled; dst_ptr += dst_stride_unrolled; src_reg_m1001 = src_reg_1223; src_reg_1 = src_reg_3; } } // From vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm filter8_1dfunction vpx_filter_block1d16_v8_ssse3; filter8_1dfunction vpx_filter_block1d16_h8_ssse3; filter8_1dfunction vpx_filter_block1d4_v8_ssse3; filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3; // Use the [vh]8 version because there is no [vh]4 implementation. #define vpx_filter_block1d16_v4_avg_ssse3 vpx_filter_block1d16_v8_avg_ssse3 #define vpx_filter_block1d16_h4_avg_ssse3 vpx_filter_block1d16_h8_avg_ssse3 #define vpx_filter_block1d8_v4_avg_ssse3 vpx_filter_block1d8_v8_avg_ssse3 #define vpx_filter_block1d8_h4_avg_ssse3 vpx_filter_block1d8_h8_avg_ssse3 #define vpx_filter_block1d4_v4_avg_ssse3 vpx_filter_block1d4_v8_avg_ssse3 #define vpx_filter_block1d4_h4_avg_ssse3 vpx_filter_block1d4_h8_avg_ssse3 // From vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm filter8_1dfunction vpx_filter_block1d16_v2_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_ssse3; filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3; filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3; // void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); // void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, // int y_step_q4, int w, int h); FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3, 0); FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * (num_taps / 2 - 1), , ssse3, 0); FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3, 1); FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * (num_taps / 2 - 1), avg_, ssse3, 1); static void filter_horiz_w8_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const x_filter) { __m128i s[8], ss[4], temp; load_8bit_8x8(src, src_stride, s); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 transpose_16bit_4x8(s, ss); temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void transpose8x8_to_dst(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride) { __m128i s[8]; load_8bit_8x8(src, src_stride, s); transpose_8bit_8x8(s, s); store_8bit_8x8(s, dst, dst_stride); } static void scaledconvolve_horiz_w8(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; // This function processes 8x8 areas. The intermediate height is not always // a multiple of 8, so force it to be a multiple of 8 here. y = h + (8 - (h & 0x7)); do { int x_q4 = x0_q4; for (x = 0; x < w; x += 8) { // process 8 src_x steps for (z = 0; z < 8; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); } else { int i; for (i = 0; i < 8; ++i) { temp[z * 8 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 8x8 filters values back to dst transpose8x8_to_dst(temp, 8, dst + x, dst_stride); } src += src_stride * 8; dst += dst_stride * 8; } while (y -= 8); } static void filter_horiz_w4_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[4], ss[2]; __m128i temp; load_8bit_8x4(src, src_stride, s); transpose_16bit_4x4(s, ss); // 00 01 10 11 20 21 30 31 s[0] = ss[0]; // 02 03 12 13 22 23 32 33 s[1] = _mm_srli_si128(ss[0], 8); // 04 05 14 15 24 25 34 35 s[2] = ss[1]; // 06 07 16 17 26 27 36 37 s[3] = _mm_srli_si128(ss[1], 8); temp = shuffle_filter_convolve8_8_ssse3(s, filter); // shrink to 8 bit each 16 bits temp = _mm_packus_epi16(temp, temp); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void transpose4x4_to_dst(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride) { __m128i s[4]; load_8bit_4x4(src, src_stride, s); s[0] = transpose_8bit_4x4(s); s[1] = _mm_srli_si128(s[0], 4); s[2] = _mm_srli_si128(s[0], 8); s[3] = _mm_srli_si128(s[0], 12); store_8bit_4x4(s, dst, dst_stride); } static void scaledconvolve_horiz_w4(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const InterpKernel *const x_filters, const int x0_q4, const int x_step_q4, const int w, const int h) { DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); int x, y, z; src -= SUBPEL_TAPS / 2 - 1; for (y = 0; y < h; y += 4) { int x_q4 = x0_q4; for (x = 0; x < w; x += 4) { // process 4 src_x steps for (z = 0; z < 4; ++z) { const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; if (x_q4 & SUBPEL_MASK) { filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); } else { int i; for (i = 0; i < 4; ++i) { temp[z * 4 + i] = src_x[i * src_stride + 3]; } } x_q4 += x_step_q4; } // transpose the 4x4 filters values back to dst transpose4x4_to_dst(temp, 4, dst + x, dst_stride); } src += src_stride * 4; dst += dst_stride * 4; } } static __m128i filter_vert_kernel(const __m128i *const s, const int16_t *const filter) { __m128i ss[4]; __m128i temp; // 00 10 01 11 02 12 03 13 ss[0] = _mm_unpacklo_epi8(s[0], s[1]); // 20 30 21 31 22 32 23 33 ss[1] = _mm_unpacklo_epi8(s[2], s[3]); // 40 50 41 51 42 52 43 53 ss[2] = _mm_unpacklo_epi8(s[4], s[5]); // 60 70 61 71 62 72 63 73 ss[3] = _mm_unpacklo_epi8(s[6], s[7]); temp = shuffle_filter_convolve8_8_ssse3(ss, filter); // shrink to 8 bit each 16 bits return _mm_packus_epi16(temp, temp); } static void filter_vert_w4_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[8]; __m128i temp; load_8bit_4x8(src, src_stride, s); temp = filter_vert_kernel(s, filter); // save only 4 bytes *(int *)dst = _mm_cvtsi128_si32(temp); } static void scaledconvolve_vert_w4( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w8_ssse3(const uint8_t *const src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter) { __m128i s[8], temp; load_8bit_8x8(src, src_stride, s); temp = filter_vert_kernel(s, filter); // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)dst, temp); } static void scaledconvolve_vert_w8( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } static void filter_vert_w16_ssse3(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const int16_t *const filter, const int w) { int i; __m128i f[4]; shuffle_filter_ssse3(filter, f); for (i = 0; i < w; i += 16) { __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi; loadu_8bit_16x8(src, src_stride, s); // merge the result together s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]); s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]); s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]); s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]); s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]); s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]); s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]); s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]); temp_lo = convolve8_8_ssse3(s_lo, f); temp_hi = convolve8_8_ssse3(s_hi, f); // shrink to 8 bit each 16 bits, the first lane contain the first convolve // result and the second lane contain the second convolve result temp_hi = _mm_packus_epi16(temp_lo, temp_hi); src += 16; // save 16 bytes convolve result _mm_store_si128((__m128i *)&dst[i], temp_hi); } } static void scaledconvolve_vert_w16( const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, const ptrdiff_t dst_stride, const InterpKernel *const y_filters, const int y0_q4, const int y_step_q4, const int w, const int h) { int y; int y_q4 = y0_q4; src -= src_stride * (SUBPEL_TAPS / 2 - 1); for (y = 0; y < h; ++y) { const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; if (y_q4 & SUBPEL_MASK) { filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, w); } else { memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); } y_q4 += y_step_q4; } } void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { // Note: Fixed size intermediate buffer, temp, places limits on parameters. // 2d filtering proceeds in 2 steps: // (1) Interpolate horizontally into an intermediate buffer, temp. // (2) Interpolate temp vertically to derive the sub-pixel result. // Deriving the maximum number of rows in the temp buffer (135): // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). // --Largest block size is 64x64 pixels. // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the // original frame (in 1/16th pixel units). // --Must round-up because block may be located at sub-pixel position. // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. // --Require an additional 8 rows for the horiz_w8 transpose tail. // When calling in frame scaling function, the smallest scaling factor is x1/4 // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still // big enough. DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); const int intermediate_height = (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; assert(w <= 64); assert(h <= 64); assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); assert(x_step_q4 <= 64); if (w >= 8) { scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } else { scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, filter, x0_q4, x_step_q4, w, intermediate_height); } if (w >= 16) { scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else if (w == 8) { scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } else { scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, y0_q4, y_step_q4, w, h); } } // void vpx_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); // void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, // uint8_t *dst, ptrdiff_t dst_stride, // const InterpKernel *filter, int x0_q4, // int32_t x_step_q4, int y0_q4, int y_step_q4, // int w, int h); FUN_CONV_2D(, ssse3, 0); FUN_CONV_2D(avg_, ssse3, 1);