ref: 5fd3c083a9ba29841afedcf1e11357841ef9461c
dir: /vpx_dsp/arm/fdct_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/txfm_common.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_dsp/arm/idct_neon.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/transpose_neon.h" void vpx_fdct4x4_neon(const int16_t *input, tran_low_t *final_output, int stride) { int i; // input[M * stride] * 16 int16x4_t input_0 = vshl_n_s16(vld1_s16(input + 0 * stride), 4); int16x4_t input_1 = vshl_n_s16(vld1_s16(input + 1 * stride), 4); int16x4_t input_2 = vshl_n_s16(vld1_s16(input + 2 * stride), 4); int16x4_t input_3 = vshl_n_s16(vld1_s16(input + 3 * stride), 4); // If the very first value != 0, then add 1. if (input[0] != 0) { const int16x4_t one = vreinterpret_s16_s64(vdup_n_s64(1)); input_0 = vadd_s16(input_0, one); } for (i = 0; i < 2; ++i) { const int16x8_t input_01 = vcombine_s16(input_0, input_1); const int16x8_t input_32 = vcombine_s16(input_3, input_2); // in_0 +/- in_3, in_1 +/- in_2 const int16x8_t s_01 = vaddq_s16(input_01, input_32); const int16x8_t s_32 = vsubq_s16(input_01, input_32); // step_0 +/- step_1, step_2 +/- step_3 const int16x4_t s_0 = vget_low_s16(s_01); const int16x4_t s_1 = vget_high_s16(s_01); const int16x4_t s_2 = vget_high_s16(s_32); const int16x4_t s_3 = vget_low_s16(s_32); // (s_0 +/- s_1) * cospi_16_64 // Must expand all elements to s32. See 'needs32' comment in fwd_txfm.c. const int32x4_t s_0_p_s_1 = vaddl_s16(s_0, s_1); const int32x4_t s_0_m_s_1 = vsubl_s16(s_0, s_1); const int32x4_t temp1 = vmulq_n_s32(s_0_p_s_1, cospi_16_64); const int32x4_t temp2 = vmulq_n_s32(s_0_m_s_1, cospi_16_64); // fdct_round_shift int16x4_t out_0 = vrshrn_n_s32(temp1, DCT_CONST_BITS); int16x4_t out_2 = vrshrn_n_s32(temp2, DCT_CONST_BITS); // s_3 * cospi_8_64 + s_2 * cospi_24_64 // s_3 * cospi_24_64 - s_2 * cospi_8_64 const int32x4_t s_3_cospi_8_64 = vmull_n_s16(s_3, cospi_8_64); const int32x4_t s_3_cospi_24_64 = vmull_n_s16(s_3, cospi_24_64); const int32x4_t temp3 = vmlal_n_s16(s_3_cospi_8_64, s_2, cospi_24_64); const int32x4_t temp4 = vmlsl_n_s16(s_3_cospi_24_64, s_2, cospi_8_64); // fdct_round_shift int16x4_t out_1 = vrshrn_n_s32(temp3, DCT_CONST_BITS); int16x4_t out_3 = vrshrn_n_s32(temp4, DCT_CONST_BITS); transpose_s16_4x4d(&out_0, &out_1, &out_2, &out_3); input_0 = out_0; input_1 = out_1; input_2 = out_2; input_3 = out_3; } { // Not quite a rounding shift. Only add 1 despite shifting by 2. const int16x8_t one = vdupq_n_s16(1); int16x8_t out_01 = vcombine_s16(input_0, input_1); int16x8_t out_23 = vcombine_s16(input_2, input_3); out_01 = vshrq_n_s16(vaddq_s16(out_01, one), 2); out_23 = vshrq_n_s16(vaddq_s16(out_23, one), 2); store_s16q_to_tran_low(final_output + 0 * 8, out_01); store_s16q_to_tran_low(final_output + 1 * 8, out_23); } }