ref: 6b02a123bc0025c85d5ba110848f65f1e9fb2442
dir: /vp8/encoder/x86/denoising_sse2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/encoder/denoising.h" #include "vp8/common/reconinter.h" #include "vpx/vpx_integer.h" #include "vpx_mem/vpx_mem.h" #include "vp8_rtcd.h" #include <emmintrin.h> #include "vpx_ports/emmintrin_compat.h" /* Compute the sum of all pixel differences of this MB. */ static INLINE unsigned int abs_sum_diff_16x1(__m128i acc_diff) { const __m128i k_1 = _mm_set1_epi16(1); const __m128i acc_diff_lo = _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8); const __m128i acc_diff_hi = _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8); const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi); const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1); const __m128i hgfe_dcba = _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); const __m128i hgfedcba = _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); unsigned int sum_diff = abs(_mm_cvtsi128_si32(hgfedcba)); return sum_diff; } int vp8_denoiser_filter_sse2(unsigned char *mc_running_avg_y, int mc_avg_y_stride, unsigned char *running_avg_y, int avg_y_stride, unsigned char *sig, int sig_stride, unsigned int motion_magnitude, int increase_denoising) { unsigned char *running_avg_y_start = running_avg_y; unsigned char *sig_start = sig; unsigned int sum_diff_thresh; int r; int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 1 : 0; __m128i acc_diff = _mm_setzero_si128(); const __m128i k_0 = _mm_setzero_si128(); const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); const __m128i k_8 = _mm_set1_epi8(8); const __m128i k_16 = _mm_set1_epi8(16); /* Modify each level's adjustment according to motion_magnitude. */ const __m128i l3 = _mm_set1_epi8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); /* Difference between level 3 and level 2 is 2. */ const __m128i l32 = _mm_set1_epi8(2); /* Difference between level 2 and level 1 is 1. */ const __m128i l21 = _mm_set1_epi8(1); for (r = 0; r < 16; ++r) { /* Calculate differences */ const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); const __m128i v_mc_running_avg_y = _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0])); __m128i v_running_avg_y; const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); /* Obtain the sign. FF if diff is negative. */ const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); /* Clamp absolute difference to 16 to be used to get mask. Doing this * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */ const __m128i clamped_absdiff = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_16); /* Get masks for l2 l1 and l0 adjustments */ const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff); const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff); const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff); /* Get adjustments for l2, l1, and l0 */ __m128i adj2 = _mm_and_si128(mask2, l32); const __m128i adj1 = _mm_and_si128(mask1, l21); const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); __m128i adj, padj, nadj; /* Combine the adjustments and get absolute adjustments. */ adj2 = _mm_add_epi8(adj2, adj1); adj = _mm_sub_epi8(l3, adj2); adj = _mm_andnot_si128(mask0, adj); adj = _mm_or_si128(adj, adj0); /* Restore the sign and get positive and negative adjustments. */ padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); /* Calculate filtered value. */ v_running_avg_y = _mm_adds_epu8(v_sig, padj); v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj); _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); /* Adjustments <=7, and each element in acc_diff can fit in signed * char. */ acc_diff = _mm_adds_epi8(acc_diff, padj); acc_diff = _mm_subs_epi8(acc_diff, nadj); /* Update pointers for next iteration. */ sig += sig_stride; mc_running_avg_y += mc_avg_y_stride; running_avg_y += avg_y_stride; } { /* Compute the sum of all pixel differences of this MB. */ unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff); sum_diff_thresh = SUM_DIFF_THRESHOLD; if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; if (abs_sum_diff > sum_diff_thresh) { // Before returning to copy the block (i.e., apply no denoising), // check if we can still apply some (weaker) temporal filtering to // this block, that would otherwise not be denoised at all. Simplest // is to apply an additional adjustment to running_avg_y to bring it // closer to sig. The adjustment is capped by a maximum delta, and // chosen such that in most cases the resulting sum_diff will be // within the acceptable range given by sum_diff_thresh. // The delta is set by the excess of absolute pixel diff over the // threshold. int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const __m128i k_delta = _mm_set1_epi8(delta); sig -= sig_stride * 16; mc_running_avg_y -= mc_avg_y_stride * 16; running_avg_y -= avg_y_stride * 16; for (r = 0; r < 16; ++r) { __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0])); // Calculate differences. const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); const __m128i v_mc_running_avg_y = _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0])); const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); // Obtain the sign. FF if diff is negative. const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); // Clamp absolute difference to delta to get the adjustment. const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); // Restore the sign and get positive and negative adjustments. __m128i padj, nadj; padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); // Calculate filtered value. v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj); v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj); _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); // Accumulate the adjustments. acc_diff = _mm_subs_epi8(acc_diff, padj); acc_diff = _mm_adds_epi8(acc_diff, nadj); // Update pointers for next iteration. sig += sig_stride; mc_running_avg_y += mc_avg_y_stride; running_avg_y += avg_y_stride; } abs_sum_diff = abs_sum_diff_16x1(acc_diff); if (abs_sum_diff > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride); return FILTER_BLOCK; } int vp8_denoiser_filter_uv_sse2(unsigned char *mc_running_avg, int mc_avg_stride, unsigned char *running_avg, int avg_stride, unsigned char *sig, int sig_stride, unsigned int motion_magnitude, int increase_denoising) { unsigned char *running_avg_start = running_avg; unsigned char *sig_start = sig; unsigned int sum_diff_thresh; int r; int shift_inc = (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ? 1 : 0; __m128i acc_diff = _mm_setzero_si128(); const __m128i k_0 = _mm_setzero_si128(); const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); const __m128i k_8 = _mm_set1_epi8(8); const __m128i k_16 = _mm_set1_epi8(16); /* Modify each level's adjustment according to motion_magnitude. */ const __m128i l3 = _mm_set1_epi8( (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ? 7 + shift_inc : 6); /* Difference between level 3 and level 2 is 2. */ const __m128i l32 = _mm_set1_epi8(2); /* Difference between level 2 and level 1 is 1. */ const __m128i l21 = _mm_set1_epi8(1); { const __m128i k_1 = _mm_set1_epi16(1); __m128i vec_sum_block = _mm_setzero_si128(); // Avoid denoising color signal if its close to average level. for (r = 0; r < 8; ++r) { const __m128i v_sig = _mm_loadl_epi64((__m128i *)(&sig[0])); const __m128i v_sig_unpack = _mm_unpacklo_epi8(v_sig, k_0); vec_sum_block = _mm_add_epi16(vec_sum_block, v_sig_unpack); sig += sig_stride; } sig -= sig_stride * 8; { const __m128i hg_fe_dc_ba = _mm_madd_epi16(vec_sum_block, k_1); const __m128i hgfe_dcba = _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); const __m128i hgfedcba = _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); const int sum_block = _mm_cvtsi128_si32(hgfedcba); if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { return COPY_BLOCK; } } } for (r = 0; r < 4; ++r) { /* Calculate differences */ const __m128i v_sig_low = _mm_castpd_si128(_mm_load_sd((double *)(&sig[0]))); const __m128i v_sig = _mm_castpd_si128(_mm_loadh_pd( _mm_castsi128_pd(v_sig_low), (double *)(&sig[sig_stride]))); const __m128i v_mc_running_avg_low = _mm_castpd_si128(_mm_load_sd((double *)(&mc_running_avg[0]))); const __m128i v_mc_running_avg = _mm_castpd_si128( _mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low), (double *)(&mc_running_avg[mc_avg_stride]))); const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg); /* Obtain the sign. FF if diff is negative. */ const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); /* Clamp absolute difference to 16 to be used to get mask. Doing this * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */ const __m128i clamped_absdiff = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_16); /* Get masks for l2 l1 and l0 adjustments */ const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff); const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff); const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff); /* Get adjustments for l2, l1, and l0 */ __m128i adj2 = _mm_and_si128(mask2, l32); const __m128i adj1 = _mm_and_si128(mask1, l21); const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); __m128i adj, padj, nadj; __m128i v_running_avg; /* Combine the adjustments and get absolute adjustments. */ adj2 = _mm_add_epi8(adj2, adj1); adj = _mm_sub_epi8(l3, adj2); adj = _mm_andnot_si128(mask0, adj); adj = _mm_or_si128(adj, adj0); /* Restore the sign and get positive and negative adjustments. */ padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); /* Calculate filtered value. */ v_running_avg = _mm_adds_epu8(v_sig, padj); v_running_avg = _mm_subs_epu8(v_running_avg, nadj); _mm_storel_pd((double *)&running_avg[0], _mm_castsi128_pd(v_running_avg)); _mm_storeh_pd((double *)&running_avg[avg_stride], _mm_castsi128_pd(v_running_avg)); /* Adjustments <=7, and each element in acc_diff can fit in signed * char. */ acc_diff = _mm_adds_epi8(acc_diff, padj); acc_diff = _mm_subs_epi8(acc_diff, nadj); /* Update pointers for next iteration. */ sig += sig_stride * 2; mc_running_avg += mc_avg_stride * 2; running_avg += avg_stride * 2; } { unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff); sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; if (abs_sum_diff > sum_diff_thresh) { // Before returning to copy the block (i.e., apply no denoising), // check if we can still apply some (weaker) temporal filtering to // this block, that would otherwise not be denoised at all. Simplest // is to apply an additional adjustment to running_avg_y to bring it // closer to sig. The adjustment is capped by a maximum delta, and // chosen such that in most cases the resulting sum_diff will be // within the acceptable range given by sum_diff_thresh. // The delta is set by the excess of absolute pixel diff over the // threshold. int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1; // Only apply the adjustment for max delta up to 3. if (delta < 4) { const __m128i k_delta = _mm_set1_epi8(delta); sig -= sig_stride * 8; mc_running_avg -= mc_avg_stride * 8; running_avg -= avg_stride * 8; for (r = 0; r < 4; ++r) { // Calculate differences. const __m128i v_sig_low = _mm_castpd_si128(_mm_load_sd((double *)(&sig[0]))); const __m128i v_sig = _mm_castpd_si128(_mm_loadh_pd( _mm_castsi128_pd(v_sig_low), (double *)(&sig[sig_stride]))); const __m128i v_mc_running_avg_low = _mm_castpd_si128(_mm_load_sd((double *)(&mc_running_avg[0]))); const __m128i v_mc_running_avg = _mm_castpd_si128( _mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low), (double *)(&mc_running_avg[mc_avg_stride]))); const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig); const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg); // Obtain the sign. FF if diff is negative. const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); // Clamp absolute difference to delta to get the adjustment. const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); // Restore the sign and get positive and negative adjustments. __m128i padj, nadj; const __m128i v_running_avg_low = _mm_castpd_si128(_mm_load_sd((double *)(&running_avg[0]))); __m128i v_running_avg = _mm_castpd_si128( _mm_loadh_pd(_mm_castsi128_pd(v_running_avg_low), (double *)(&running_avg[avg_stride]))); padj = _mm_andnot_si128(diff_sign, adj); nadj = _mm_and_si128(diff_sign, adj); // Calculate filtered value. v_running_avg = _mm_subs_epu8(v_running_avg, padj); v_running_avg = _mm_adds_epu8(v_running_avg, nadj); _mm_storel_pd((double *)&running_avg[0], _mm_castsi128_pd(v_running_avg)); _mm_storeh_pd((double *)&running_avg[avg_stride], _mm_castsi128_pd(v_running_avg)); // Accumulate the adjustments. acc_diff = _mm_subs_epi8(acc_diff, padj); acc_diff = _mm_adds_epi8(acc_diff, nadj); // Update pointers for next iteration. sig += sig_stride * 2; mc_running_avg += mc_avg_stride * 2; running_avg += avg_stride * 2; } abs_sum_diff = abs_sum_diff_16x1(acc_diff); if (abs_sum_diff > sum_diff_thresh) { return COPY_BLOCK; } } else { return COPY_BLOCK; } } } vp8_copy_mem8x8(running_avg_start, avg_stride, sig_start, sig_stride); return FILTER_BLOCK; }