ref: 7ca417f66547dc5e9e3ad36c45e147f05e66522a
dir: /test/convolve_test.cc/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <string.h> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_filter.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_dsp/vpx_filter.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/vpx_timer.h" namespace { static const unsigned int kMaxDimension = 64; typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, int h); typedef void (*WrapperFilterBlock2d8Func)( const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int use_highbd); struct ConvolveFunctions { ConvolveFunctions(ConvolveFunc copy, ConvolveFunc avg, ConvolveFunc h8, ConvolveFunc h8_avg, ConvolveFunc v8, ConvolveFunc v8_avg, ConvolveFunc hv8, ConvolveFunc hv8_avg, ConvolveFunc sh8, ConvolveFunc sh8_avg, ConvolveFunc sv8, ConvolveFunc sv8_avg, ConvolveFunc shv8, ConvolveFunc shv8_avg, int bd) : use_highbd_(bd) { copy_[0] = copy; copy_[1] = avg; h8_[0] = h8; h8_[1] = h8_avg; v8_[0] = v8; v8_[1] = v8_avg; hv8_[0] = hv8; hv8_[1] = hv8_avg; sh8_[0] = sh8; sh8_[1] = sh8_avg; sv8_[0] = sv8; sv8_[1] = sv8_avg; shv8_[0] = shv8; shv8_[1] = shv8_avg; } ConvolveFunc copy_[2]; ConvolveFunc h8_[2]; ConvolveFunc v8_[2]; ConvolveFunc hv8_[2]; ConvolveFunc sh8_[2]; // scaled horiz ConvolveFunc sv8_[2]; // scaled vert ConvolveFunc shv8_[2]; // scaled horiz/vert int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth. }; typedef ::testing::tuple<int, int, const ConvolveFunctions *> ConvolveParam; #define ALL_SIZES(convolve_fn) \ make_tuple(4, 4, &convolve_fn), make_tuple(8, 4, &convolve_fn), \ make_tuple(4, 8, &convolve_fn), make_tuple(8, 8, &convolve_fn), \ make_tuple(16, 8, &convolve_fn), make_tuple(8, 16, &convolve_fn), \ make_tuple(16, 16, &convolve_fn), make_tuple(32, 16, &convolve_fn), \ make_tuple(16, 32, &convolve_fn), make_tuple(32, 32, &convolve_fn), \ make_tuple(64, 32, &convolve_fn), make_tuple(32, 64, &convolve_fn), \ make_tuple(64, 64, &convolve_fn) // Reference 8-tap subpixel filter, slightly modified to fit into this test. #define VP9_FILTER_WEIGHT 128 #define VP9_FILTER_SHIFT 7 uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; } void filter_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { // Between passes, we use an intermediate buffer whose height is extended to // have enough horizontally filtered values as input for the vertical pass. // This buffer is allocated to be big enough for the largest block type we // support. const int kInterp_Extend = 4; const unsigned int intermediate_height = (kInterp_Extend - 1) + output_height + kInterp_Extend; unsigned int i, j; // Size of intermediate_buffer is max_intermediate_height * filter_max_width, // where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height // + kInterp_Extend // = 3 + 16 + 4 // = 23 // and filter_max_width = 16 // uint8_t intermediate_buffer[71 * kMaxDimension]; vp9_zero(intermediate_buffer); const int intermediate_next_stride = 1 - static_cast<int>(intermediate_height * output_width); // Horizontal pass (src -> transposed intermediate). uint8_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * hfilter[0]) + (src_ptr[1] * hfilter[1]) + (src_ptr[2] * hfilter[2]) + (src_ptr[3] * hfilter[3]) + (src_ptr[4] * hfilter[4]) + (src_ptr[5] * hfilter[5]) + (src_ptr[6] * hfilter[6]) + (src_ptr[7] * hfilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } // Vertical pass (transposed intermediate -> dst). src_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * vfilter[0]) + (src_ptr[1] * vfilter[1]) + (src_ptr[2] * vfilter[2]) + (src_ptr[3] * vfilter[3]) + (src_ptr[4] * vfilter[4]) + (src_ptr[5] * vfilter[5]) + (src_ptr[6] * vfilter[6]) + (src_ptr[7] * vfilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT); src_ptr += intermediate_height; } src_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } void block2d_average_c(uint8_t *src, unsigned int src_stride, uint8_t *output_ptr, unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void filter_average_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { uint8_t tmp[kMaxDimension * kMaxDimension]; assert(output_width <= kMaxDimension); assert(output_height <= kMaxDimension); filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, tmp, 64, output_width, output_height); block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, output_height); } #if CONFIG_VP9_HIGHBITDEPTH void highbd_filter_block2d_8_c(const uint16_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint16_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int bd) { // Between passes, we use an intermediate buffer whose height is extended to // have enough horizontally filtered values as input for the vertical pass. // This buffer is allocated to be big enough for the largest block type we // support. const int kInterp_Extend = 4; const unsigned int intermediate_height = (kInterp_Extend - 1) + output_height + kInterp_Extend; /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height * + kInterp_Extend * = 3 + 16 + 4 * = 23 * and filter_max_width = 16 */ uint16_t intermediate_buffer[71 * kMaxDimension]; const int intermediate_next_stride = 1 - static_cast<int>(intermediate_height * output_width); vp9_zero(intermediate_buffer); // Horizontal pass (src -> transposed intermediate). { uint16_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; unsigned int i, j; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * hfilter[0]) + (src_ptr[1] * hfilter[1]) + (src_ptr[2] * hfilter[2]) + (src_ptr[3] * hfilter[3]) + (src_ptr[4] * hfilter[4]) + (src_ptr[5] * hfilter[5]) + (src_ptr[6] * hfilter[6]) + (src_ptr[7] * hfilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } } // Vertical pass (transposed intermediate -> dst). { uint16_t *src_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * vfilter[0]) + (src_ptr[1] * vfilter[1]) + (src_ptr[2] * vfilter[2]) + (src_ptr[3] * vfilter[3]) + (src_ptr[4] * vfilter[4]) + (src_ptr[5] * vfilter[5]) + (src_ptr[6] * vfilter[6]) + (src_ptr[7] * vfilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd); src_ptr += intermediate_height; } src_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } } void highbd_block2d_average_c(uint16_t *src, unsigned int src_stride, uint16_t *output_ptr, unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void highbd_filter_average_block2d_8_c( const uint16_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint16_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int bd) { uint16_t tmp[kMaxDimension * kMaxDimension]; assert(output_width <= kMaxDimension); assert(output_height <= kMaxDimension); highbd_filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, tmp, 64, output_width, output_height, bd); highbd_block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, output_height); } #endif // CONFIG_VP9_HIGHBITDEPTH void wrapper_filter_average_block2d_8_c( const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int use_highbd) { #if CONFIG_VP9_HIGHBITDEPTH if (use_highbd == 0) { filter_average_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, dst_stride, output_width, output_height); } else { highbd_filter_average_block2d_8_c(CAST_TO_SHORTPTR(src_ptr), src_stride, hfilter, vfilter, CAST_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height, use_highbd); } #else ASSERT_EQ(0, use_highbd); filter_average_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, dst_stride, output_width, output_height); #endif } void wrapper_filter_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height, int use_highbd) { #if CONFIG_VP9_HIGHBITDEPTH if (use_highbd == 0) { filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, dst_stride, output_width, output_height); } else { highbd_filter_block2d_8_c(CAST_TO_SHORTPTR(src_ptr), src_stride, hfilter, vfilter, CAST_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height, use_highbd); } #else ASSERT_EQ(0, use_highbd); filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, dst_stride, output_width, output_height); #endif } class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> { public: static void SetUpTestCase() { // Force input_ to be unaligned, output to be 16 byte aligned. input_ = reinterpret_cast<uint8_t *>( vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1; output_ = reinterpret_cast<uint8_t *>( vpx_memalign(kDataAlignment, kOutputBufferSize)); output_ref_ = reinterpret_cast<uint8_t *>( vpx_memalign(kDataAlignment, kOutputBufferSize)); #if CONFIG_VP9_HIGHBITDEPTH input16_ = reinterpret_cast<uint16_t *>(vpx_memalign( kDataAlignment, (kInputBufferSize + 1) * sizeof(uint16_t))) + 1; output16_ = reinterpret_cast<uint16_t *>( vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); output16_ref_ = reinterpret_cast<uint16_t *>( vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); #endif } virtual void TearDown() { libvpx_test::ClearSystemState(); } static void TearDownTestCase() { vpx_free(input_ - 1); input_ = NULL; vpx_free(output_); output_ = NULL; vpx_free(output_ref_); output_ref_ = NULL; #if CONFIG_VP9_HIGHBITDEPTH vpx_free(input16_ - 1); input16_ = NULL; vpx_free(output16_); output16_ = NULL; vpx_free(output16_ref_); output16_ref_ = NULL; #endif } protected: static const int kDataAlignment = 16; static const int kOuterBlockSize = 256; static const int kInputStride = kOuterBlockSize; static const int kOutputStride = kOuterBlockSize; static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; int Width() const { return GET_PARAM(0); } int Height() const { return GET_PARAM(1); } int BorderLeft() const { const int center = (kOuterBlockSize - Width()) / 2; return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); } int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } bool IsIndexInBorder(int i) { return (i < BorderTop() * kOuterBlockSize || i >= (BorderTop() + Height()) * kOuterBlockSize || i % kOuterBlockSize < BorderLeft() || i % kOuterBlockSize >= (BorderLeft() + Width())); } virtual void SetUp() { UUT_ = GET_PARAM(2); #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ != 0) { mask_ = (1 << UUT_->use_highbd_) - 1; } else { mask_ = 255; } #endif /* Set up guard blocks for an inner block centered in the outer block */ for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) { output_[i] = 255; } else { output_[i] = 0; } } ::libvpx_test::ACMRandom prng; for (int i = 0; i < kInputBufferSize; ++i) { if (i & 1) { input_[i] = 255; #if CONFIG_VP9_HIGHBITDEPTH input16_[i] = mask_; #endif } else { input_[i] = prng.Rand8Extremes(); #if CONFIG_VP9_HIGHBITDEPTH input16_[i] = prng.Rand16() & mask_; #endif } } } void SetConstantInput(int value) { memset(input_, value, kInputBufferSize); #if CONFIG_VP9_HIGHBITDEPTH vpx_memset16(input16_, value, kInputBufferSize); #endif } void CopyOutputToRef() { memcpy(output_ref_, output_, kOutputBufferSize); #if CONFIG_VP9_HIGHBITDEPTH memcpy(output16_ref_, output16_, kOutputBufferSize * sizeof(output16_ref_[0])); #endif } void CheckGuardBlocks() { for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) { EXPECT_EQ(255, output_[i]); } } } uint8_t *input() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0) { return input_ + offset; } else { return CAST_TO_BYTEPTR(input16_ + offset); } #else return input_ + offset; #endif } uint8_t *output() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0) { return output_ + offset; } else { return CAST_TO_BYTEPTR(output16_ + offset); } #else return output_ + offset; #endif } uint8_t *output_ref() const { const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0) { return output_ref_ + offset; } else { return CAST_TO_BYTEPTR(output16_ref_ + offset); } #else return output_ref_ + offset; #endif } uint16_t lookup(uint8_t *list, int index) const { #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0) { return list[index]; } else { return CAST_TO_SHORTPTR(list)[index]; } #else return list[index]; #endif } void assign_val(uint8_t *list, int index, uint16_t val) const { #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0) { list[index] = (uint8_t)val; } else { CAST_TO_SHORTPTR(list)[index] = val; } #else list[index] = (uint8_t)val; #endif } const ConvolveFunctions *UUT_; static uint8_t *input_; static uint8_t *output_; static uint8_t *output_ref_; #if CONFIG_VP9_HIGHBITDEPTH static uint16_t *input16_; static uint16_t *output16_; static uint16_t *output16_ref_; int mask_; #endif }; uint8_t *ConvolveTest::input_ = NULL; uint8_t *ConvolveTest::output_ = NULL; uint8_t *ConvolveTest::output_ref_ = NULL; #if CONFIG_VP9_HIGHBITDEPTH uint16_t *ConvolveTest::input16_ = NULL; uint16_t *ConvolveTest::output16_ = NULL; uint16_t *ConvolveTest::output16_ref_ = NULL; #endif TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } TEST_P(ConvolveTest, DISABLED_Copy_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->copy_[0](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve_copy_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_Avg_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->copy_[1](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve_avg_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_Scale_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->shv8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve_scale_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_8Tap_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->hv8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve8_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_8Tap_Horiz_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->h8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve8_horiz_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_8Tap_Vert_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->v8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve8_vert_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_4Tap_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const fourtap = vp9_filter_kernels[FOURTAP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->hv8_[0](in, kInputStride, out, kOutputStride, fourtap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve4_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_4Tap_Horiz_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const fourtap = vp9_filter_kernels[FOURTAP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->h8_[0](in, kInputStride, out, kOutputStride, fourtap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve4_horiz_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_4Tap_Vert_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const fourtap = vp9_filter_kernels[FOURTAP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->v8_[0](in, kInputStride, out, kOutputStride, fourtap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve4_vert_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, DISABLED_8Tap_Avg_Speed) { const uint8_t *const in = input(); uint8_t *const out = output(); const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; const int kNumTests = 5000000; const int width = Width(); const int height = Height(); vpx_usec_timer timer; SetConstantInput(127); vpx_usec_timer_start(&timer); for (int n = 0; n < kNumTests; ++n) { UUT_->hv8_[1](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, width, height); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast<int>(vpx_usec_timer_elapsed(&timer)); printf("convolve8_avg_%dx%d_%d: %d us\n", width, height, UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); } TEST_P(ConvolveTest, Copy) { uint8_t *const in = input(); uint8_t *const out = output(); ASM_REGISTER_STATE_CHECK(UUT_->copy_[0](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), lookup(in, y * kInputStride + x)) << "(" << x << "," << y << ")"; } } TEST_P(ConvolveTest, Avg) { uint8_t *const in = input(); uint8_t *const out = output(); uint8_t *const out_ref = output_ref(); CopyOutputToRef(); ASM_REGISTER_STATE_CHECK(UUT_->copy_[1](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), ROUND_POWER_OF_TWO(lookup(in, y * kInputStride + x) + lookup(out_ref, y * kOutputStride + x), 1)) << "(" << x << "," << y << ")"; } } TEST_P(ConvolveTest, CopyHoriz) { uint8_t *const in = input(); uint8_t *const out = output(); ASM_REGISTER_STATE_CHECK(UUT_->sh8_[0](in, kInputStride, out, kOutputStride, vp9_filter_kernels[0], 0, 16, 0, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), lookup(in, y * kInputStride + x)) << "(" << x << "," << y << ")"; } } TEST_P(ConvolveTest, CopyVert) { uint8_t *const in = input(); uint8_t *const out = output(); ASM_REGISTER_STATE_CHECK(UUT_->sv8_[0](in, kInputStride, out, kOutputStride, vp9_filter_kernels[0], 0, 16, 0, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), lookup(in, y * kInputStride + x)) << "(" << x << "," << y << ")"; } } TEST_P(ConvolveTest, Copy2D) { uint8_t *const in = input(); uint8_t *const out = output(); ASM_REGISTER_STATE_CHECK(UUT_->shv8_[0](in, kInputStride, out, kOutputStride, vp9_filter_kernels[0], 0, 16, 0, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(out, y * kOutputStride + x), lookup(in, y * kInputStride + x)) << "(" << x << "," << y << ")"; } } const int kNumFilterBanks = 5; const int kNumFilters = 16; TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_filter_kernels[static_cast<INTERP_FILTER>(filter_bank)]; for (int i = 0; i < kNumFilters; i++) { const int p0 = filters[i][0] + filters[i][1]; const int p1 = filters[i][2] + filters[i][3]; const int p2 = filters[i][4] + filters[i][5]; const int p3 = filters[i][6] + filters[i][7]; EXPECT_LE(p0, 128); EXPECT_LE(p1, 128); EXPECT_LE(p2, 128); EXPECT_LE(p3, 128); EXPECT_LE(p0 + p3, 128); EXPECT_LE(p0 + p3 + p1, 128); EXPECT_LE(p0 + p3 + p1 + p2, 128); EXPECT_EQ(p0 + p1 + p2 + p3, 128); } } } const WrapperFilterBlock2d8Func wrapper_filter_block2d_8[2] = { wrapper_filter_block2d_8_c, wrapper_filter_average_block2d_8_c }; TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { for (int i = 0; i < 2; ++i) { uint8_t *const in = input(); uint8_t *const out = output(); #if CONFIG_VP9_HIGHBITDEPTH uint8_t ref8[kOutputStride * kMaxDimension]; uint16_t ref16[kOutputStride * kMaxDimension]; uint8_t *ref; if (UUT_->use_highbd_ == 0) { ref = ref8; } else { ref = CAST_TO_BYTEPTR(ref16); } #else uint8_t ref[kOutputStride * kMaxDimension]; #endif // Populate ref and out with some random data ::libvpx_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { uint16_t r; #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { r = prng.Rand8Extremes(); } else { r = prng.Rand16() & mask_; } #else r = prng.Rand8Extremes(); #endif assign_val(out, y * kOutputStride + x, r); assign_val(ref, y * kOutputStride + x, r); } } for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_filter_kernels[static_cast<INTERP_FILTER>(filter_bank)]; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { wrapper_filter_block2d_8[i](in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height(), UUT_->use_highbd_); if (filter_x && filter_y) ASM_REGISTER_STATE_CHECK( UUT_->hv8_[i](in, kInputStride, out, kOutputStride, filters, filter_x, 16, filter_y, 16, Width(), Height())); else if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_[i](in, kInputStride, out, kOutputStride, filters, 0, 16, filter_y, 16, Width(), Height())); else if (filter_x) ASM_REGISTER_STATE_CHECK( UUT_->h8_[i](in, kInputStride, out, kOutputStride, filters, filter_x, 16, 0, 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK(UUT_->copy_[i](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(ref, y * kOutputStride + x), lookup(out, y * kOutputStride + x)) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } } } TEST_P(ConvolveTest, FilterExtremes) { uint8_t *const in = input(); uint8_t *const out = output(); #if CONFIG_VP9_HIGHBITDEPTH uint8_t ref8[kOutputStride * kMaxDimension]; uint16_t ref16[kOutputStride * kMaxDimension]; uint8_t *ref; if (UUT_->use_highbd_ == 0) { ref = ref8; } else { ref = CAST_TO_BYTEPTR(ref16); } #else uint8_t ref[kOutputStride * kMaxDimension]; #endif // Populate ref and out with some random data ::libvpx_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { uint16_t r; #if CONFIG_VP9_HIGHBITDEPTH if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { r = prng.Rand8Extremes(); } else { r = prng.Rand16() & mask_; } #else r = prng.Rand8Extremes(); #endif assign_val(out, y * kOutputStride + x, r); assign_val(ref, y * kOutputStride + x, r); } } for (int axis = 0; axis < 2; axis++) { int seed_val = 0; while (seed_val < 256) { for (int y = 0; y < 8; ++y) { for (int x = 0; x < 8; ++x) { #if CONFIG_VP9_HIGHBITDEPTH assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, ((seed_val >> (axis ? y : x)) & 1) * mask_); #else assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, ((seed_val >> (axis ? y : x)) & 1) * 255); #endif if (axis) seed_val++; } if (axis) { seed_val -= 8; } else { seed_val++; } } if (axis) seed_val += 8; for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const InterpKernel *filters = vp9_filter_kernels[static_cast<INTERP_FILTER>(filter_bank)]; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height(), UUT_->use_highbd_); if (filter_x && filter_y) ASM_REGISTER_STATE_CHECK( UUT_->hv8_[0](in, kInputStride, out, kOutputStride, filters, filter_x, 16, filter_y, 16, Width(), Height())); else if (filter_y) ASM_REGISTER_STATE_CHECK( UUT_->v8_[0](in, kInputStride, out, kOutputStride, filters, 0, 16, filter_y, 16, Width(), Height())); else if (filter_x) ASM_REGISTER_STATE_CHECK( UUT_->h8_[0](in, kInputStride, out, kOutputStride, filters, filter_x, 16, 0, 16, Width(), Height())); else ASM_REGISTER_STATE_CHECK(UUT_->copy_[0](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, Width(), Height())); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) ASSERT_EQ(lookup(ref, y * kOutputStride + x), lookup(out, y * kOutputStride + x)) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } } } } /* This test exercises that enough rows and columns are filtered with every possible initial fractional positions and scaling steps. */ #if !CONFIG_VP9_HIGHBITDEPTH static const ConvolveFunc scaled_2d_c_funcs[2] = { vpx_scaled_2d_c, vpx_scaled_avg_2d_c }; TEST_P(ConvolveTest, CheckScalingFiltering) { uint8_t *const in = input(); uint8_t *const out = output(); uint8_t ref[kOutputStride * kMaxDimension]; ::libvpx_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { const uint16_t r = prng.Rand8Extremes(); assign_val(in, y * kInputStride + x, r); } } for (int i = 0; i < 2; ++i) { for (INTERP_FILTER filter_type = 0; filter_type < 4; ++filter_type) { const InterpKernel *const eighttap = vp9_filter_kernels[filter_type]; for (int frac = 0; frac < 16; ++frac) { for (int step = 1; step <= 32; ++step) { /* Test the horizontal and vertical filters in combination. */ scaled_2d_c_funcs[i](in, kInputStride, ref, kOutputStride, eighttap, frac, step, frac, step, Width(), Height()); ASM_REGISTER_STATE_CHECK( UUT_->shv8_[i](in, kInputStride, out, kOutputStride, eighttap, frac, step, frac, step, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { ASSERT_EQ(lookup(ref, y * kOutputStride + x), lookup(out, y * kOutputStride + x)) << "x == " << x << ", y == " << y << ", frac == " << frac << ", step == " << step; } } } } } } } #endif using ::testing::make_tuple; #if CONFIG_VP9_HIGHBITDEPTH #define WRAP(func, bd) \ void wrap_##func##_##bd( \ const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, \ int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { \ vpx_highbd_##func(reinterpret_cast<const uint16_t *>(src), src_stride, \ reinterpret_cast<uint16_t *>(dst), dst_stride, filter, \ x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, bd); \ } #if HAVE_SSE2 && ARCH_X86_64 WRAP(convolve_copy_sse2, 8) WRAP(convolve_avg_sse2, 8) WRAP(convolve_copy_sse2, 10) WRAP(convolve_avg_sse2, 10) WRAP(convolve_copy_sse2, 12) WRAP(convolve_avg_sse2, 12) WRAP(convolve8_horiz_sse2, 8) WRAP(convolve8_avg_horiz_sse2, 8) WRAP(convolve8_vert_sse2, 8) WRAP(convolve8_avg_vert_sse2, 8) WRAP(convolve8_sse2, 8) WRAP(convolve8_avg_sse2, 8) WRAP(convolve8_horiz_sse2, 10) WRAP(convolve8_avg_horiz_sse2, 10) WRAP(convolve8_vert_sse2, 10) WRAP(convolve8_avg_vert_sse2, 10) WRAP(convolve8_sse2, 10) WRAP(convolve8_avg_sse2, 10) WRAP(convolve8_horiz_sse2, 12) WRAP(convolve8_avg_horiz_sse2, 12) WRAP(convolve8_vert_sse2, 12) WRAP(convolve8_avg_vert_sse2, 12) WRAP(convolve8_sse2, 12) WRAP(convolve8_avg_sse2, 12) #endif // HAVE_SSE2 && ARCH_X86_64 #if HAVE_AVX2 WRAP(convolve_copy_avx2, 8) WRAP(convolve_avg_avx2, 8) WRAP(convolve8_horiz_avx2, 8) WRAP(convolve8_avg_horiz_avx2, 8) WRAP(convolve8_vert_avx2, 8) WRAP(convolve8_avg_vert_avx2, 8) WRAP(convolve8_avx2, 8) WRAP(convolve8_avg_avx2, 8) WRAP(convolve_copy_avx2, 10) WRAP(convolve_avg_avx2, 10) WRAP(convolve8_avx2, 10) WRAP(convolve8_horiz_avx2, 10) WRAP(convolve8_vert_avx2, 10) WRAP(convolve8_avg_avx2, 10) WRAP(convolve8_avg_horiz_avx2, 10) WRAP(convolve8_avg_vert_avx2, 10) WRAP(convolve_copy_avx2, 12) WRAP(convolve_avg_avx2, 12) WRAP(convolve8_avx2, 12) WRAP(convolve8_horiz_avx2, 12) WRAP(convolve8_vert_avx2, 12) WRAP(convolve8_avg_avx2, 12) WRAP(convolve8_avg_horiz_avx2, 12) WRAP(convolve8_avg_vert_avx2, 12) #endif // HAVE_AVX2 #if HAVE_NEON WRAP(convolve_copy_neon, 8) WRAP(convolve_avg_neon, 8) WRAP(convolve_copy_neon, 10) WRAP(convolve_avg_neon, 10) WRAP(convolve_copy_neon, 12) WRAP(convolve_avg_neon, 12) WRAP(convolve8_horiz_neon, 8) WRAP(convolve8_avg_horiz_neon, 8) WRAP(convolve8_vert_neon, 8) WRAP(convolve8_avg_vert_neon, 8) WRAP(convolve8_neon, 8) WRAP(convolve8_avg_neon, 8) WRAP(convolve8_horiz_neon, 10) WRAP(convolve8_avg_horiz_neon, 10) WRAP(convolve8_vert_neon, 10) WRAP(convolve8_avg_vert_neon, 10) WRAP(convolve8_neon, 10) WRAP(convolve8_avg_neon, 10) WRAP(convolve8_horiz_neon, 12) WRAP(convolve8_avg_horiz_neon, 12) WRAP(convolve8_vert_neon, 12) WRAP(convolve8_avg_vert_neon, 12) WRAP(convolve8_neon, 12) WRAP(convolve8_avg_neon, 12) #endif // HAVE_NEON WRAP(convolve_copy_c, 8) WRAP(convolve_avg_c, 8) WRAP(convolve8_horiz_c, 8) WRAP(convolve8_avg_horiz_c, 8) WRAP(convolve8_vert_c, 8) WRAP(convolve8_avg_vert_c, 8) WRAP(convolve8_c, 8) WRAP(convolve8_avg_c, 8) WRAP(convolve_copy_c, 10) WRAP(convolve_avg_c, 10) WRAP(convolve8_horiz_c, 10) WRAP(convolve8_avg_horiz_c, 10) WRAP(convolve8_vert_c, 10) WRAP(convolve8_avg_vert_c, 10) WRAP(convolve8_c, 10) WRAP(convolve8_avg_c, 10) WRAP(convolve_copy_c, 12) WRAP(convolve_avg_c, 12) WRAP(convolve8_horiz_c, 12) WRAP(convolve8_avg_horiz_c, 12) WRAP(convolve8_vert_c, 12) WRAP(convolve8_avg_vert_c, 12) WRAP(convolve8_c, 12) WRAP(convolve8_avg_c, 12) #undef WRAP const ConvolveFunctions convolve8_c( wrap_convolve_copy_c_8, wrap_convolve_avg_c_8, wrap_convolve8_horiz_c_8, wrap_convolve8_avg_horiz_c_8, wrap_convolve8_vert_c_8, wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, wrap_convolve8_avg_c_8, wrap_convolve8_horiz_c_8, wrap_convolve8_avg_horiz_c_8, wrap_convolve8_vert_c_8, wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, wrap_convolve8_avg_c_8, 8); const ConvolveFunctions convolve10_c( wrap_convolve_copy_c_10, wrap_convolve_avg_c_10, wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10, wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, wrap_convolve8_avg_c_10, wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10, wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, wrap_convolve8_avg_c_10, 10); const ConvolveFunctions convolve12_c( wrap_convolve_copy_c_12, wrap_convolve_avg_c_12, wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12, wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, wrap_convolve8_avg_c_12, wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12, wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, wrap_convolve8_avg_c_12, 12); const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(convolve8_c), ALL_SIZES(convolve10_c), ALL_SIZES(convolve12_c) }; #else const ConvolveFunctions convolve8_c( vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_c, vpx_convolve8_avg_horiz_c, vpx_convolve8_vert_c, vpx_convolve8_avg_vert_c, vpx_convolve8_c, vpx_convolve8_avg_c, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(convolve8_c) }; #endif INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_c)); #if HAVE_SSE2 && ARCH_X86_64 #if CONFIG_VP9_HIGHBITDEPTH const ConvolveFunctions convolve8_sse2( wrap_convolve_copy_sse2_8, wrap_convolve_avg_sse2_8, wrap_convolve8_horiz_sse2_8, wrap_convolve8_avg_horiz_sse2_8, wrap_convolve8_vert_sse2_8, wrap_convolve8_avg_vert_sse2_8, wrap_convolve8_sse2_8, wrap_convolve8_avg_sse2_8, wrap_convolve8_horiz_sse2_8, wrap_convolve8_avg_horiz_sse2_8, wrap_convolve8_vert_sse2_8, wrap_convolve8_avg_vert_sse2_8, wrap_convolve8_sse2_8, wrap_convolve8_avg_sse2_8, 8); const ConvolveFunctions convolve10_sse2( wrap_convolve_copy_sse2_10, wrap_convolve_avg_sse2_10, wrap_convolve8_horiz_sse2_10, wrap_convolve8_avg_horiz_sse2_10, wrap_convolve8_vert_sse2_10, wrap_convolve8_avg_vert_sse2_10, wrap_convolve8_sse2_10, wrap_convolve8_avg_sse2_10, wrap_convolve8_horiz_sse2_10, wrap_convolve8_avg_horiz_sse2_10, wrap_convolve8_vert_sse2_10, wrap_convolve8_avg_vert_sse2_10, wrap_convolve8_sse2_10, wrap_convolve8_avg_sse2_10, 10); const ConvolveFunctions convolve12_sse2( wrap_convolve_copy_sse2_12, wrap_convolve_avg_sse2_12, wrap_convolve8_horiz_sse2_12, wrap_convolve8_avg_horiz_sse2_12, wrap_convolve8_vert_sse2_12, wrap_convolve8_avg_vert_sse2_12, wrap_convolve8_sse2_12, wrap_convolve8_avg_sse2_12, wrap_convolve8_horiz_sse2_12, wrap_convolve8_avg_horiz_sse2_12, wrap_convolve8_vert_sse2_12, wrap_convolve8_avg_vert_sse2_12, wrap_convolve8_sse2_12, wrap_convolve8_avg_sse2_12, 12); const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2), ALL_SIZES(convolve10_sse2), ALL_SIZES(convolve12_sse2) }; #else const ConvolveFunctions convolve8_sse2( vpx_convolve_copy_sse2, vpx_convolve_avg_sse2, vpx_convolve8_horiz_sse2, vpx_convolve8_avg_horiz_sse2, vpx_convolve8_vert_sse2, vpx_convolve8_avg_vert_sse2, vpx_convolve8_sse2, vpx_convolve8_avg_sse2, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2) }; #endif // CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_sse2)); #endif #if HAVE_SSSE3 const ConvolveFunctions convolve8_ssse3( vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_ssse3, vpx_convolve8_avg_horiz_ssse3, vpx_convolve8_vert_ssse3, vpx_convolve8_avg_vert_ssse3, vpx_convolve8_ssse3, vpx_convolve8_avg_ssse3, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_ssse3, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve8_ssse3[] = { ALL_SIZES(convolve8_ssse3) }; INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_ssse3)); #endif #if HAVE_AVX2 #if CONFIG_VP9_HIGHBITDEPTH const ConvolveFunctions convolve8_avx2( wrap_convolve_copy_avx2_8, wrap_convolve_avg_avx2_8, wrap_convolve8_horiz_avx2_8, wrap_convolve8_avg_horiz_avx2_8, wrap_convolve8_vert_avx2_8, wrap_convolve8_avg_vert_avx2_8, wrap_convolve8_avx2_8, wrap_convolve8_avg_avx2_8, wrap_convolve8_horiz_c_8, wrap_convolve8_avg_horiz_c_8, wrap_convolve8_vert_c_8, wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, wrap_convolve8_avg_c_8, 8); const ConvolveFunctions convolve10_avx2( wrap_convolve_copy_avx2_10, wrap_convolve_avg_avx2_10, wrap_convolve8_horiz_avx2_10, wrap_convolve8_avg_horiz_avx2_10, wrap_convolve8_vert_avx2_10, wrap_convolve8_avg_vert_avx2_10, wrap_convolve8_avx2_10, wrap_convolve8_avg_avx2_10, wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10, wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, wrap_convolve8_avg_c_10, 10); const ConvolveFunctions convolve12_avx2( wrap_convolve_copy_avx2_12, wrap_convolve_avg_avx2_12, wrap_convolve8_horiz_avx2_12, wrap_convolve8_avg_horiz_avx2_12, wrap_convolve8_vert_avx2_12, wrap_convolve8_avg_vert_avx2_12, wrap_convolve8_avx2_12, wrap_convolve8_avg_avx2_12, wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12, wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, wrap_convolve8_avg_c_12, 12); const ConvolveParam kArrayConvolve8_avx2[] = { ALL_SIZES(convolve8_avx2), ALL_SIZES(convolve10_avx2), ALL_SIZES(convolve12_avx2) }; INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_avx2)); #else // !CONFIG_VP9_HIGHBITDEPTH const ConvolveFunctions convolve8_avx2( vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_avx2, vpx_convolve8_avg_horiz_avx2, vpx_convolve8_vert_avx2, vpx_convolve8_avg_vert_avx2, vpx_convolve8_avx2, vpx_convolve8_avg_avx2, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve8_avx2[] = { ALL_SIZES(convolve8_avx2) }; INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_avx2)); #endif // CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_AVX2 #if HAVE_NEON #if CONFIG_VP9_HIGHBITDEPTH const ConvolveFunctions convolve8_neon( wrap_convolve_copy_neon_8, wrap_convolve_avg_neon_8, wrap_convolve8_horiz_neon_8, wrap_convolve8_avg_horiz_neon_8, wrap_convolve8_vert_neon_8, wrap_convolve8_avg_vert_neon_8, wrap_convolve8_neon_8, wrap_convolve8_avg_neon_8, wrap_convolve8_horiz_neon_8, wrap_convolve8_avg_horiz_neon_8, wrap_convolve8_vert_neon_8, wrap_convolve8_avg_vert_neon_8, wrap_convolve8_neon_8, wrap_convolve8_avg_neon_8, 8); const ConvolveFunctions convolve10_neon( wrap_convolve_copy_neon_10, wrap_convolve_avg_neon_10, wrap_convolve8_horiz_neon_10, wrap_convolve8_avg_horiz_neon_10, wrap_convolve8_vert_neon_10, wrap_convolve8_avg_vert_neon_10, wrap_convolve8_neon_10, wrap_convolve8_avg_neon_10, wrap_convolve8_horiz_neon_10, wrap_convolve8_avg_horiz_neon_10, wrap_convolve8_vert_neon_10, wrap_convolve8_avg_vert_neon_10, wrap_convolve8_neon_10, wrap_convolve8_avg_neon_10, 10); const ConvolveFunctions convolve12_neon( wrap_convolve_copy_neon_12, wrap_convolve_avg_neon_12, wrap_convolve8_horiz_neon_12, wrap_convolve8_avg_horiz_neon_12, wrap_convolve8_vert_neon_12, wrap_convolve8_avg_vert_neon_12, wrap_convolve8_neon_12, wrap_convolve8_avg_neon_12, wrap_convolve8_horiz_neon_12, wrap_convolve8_avg_horiz_neon_12, wrap_convolve8_vert_neon_12, wrap_convolve8_avg_vert_neon_12, wrap_convolve8_neon_12, wrap_convolve8_avg_neon_12, 12); const ConvolveParam kArrayConvolve_neon[] = { ALL_SIZES(convolve8_neon), ALL_SIZES(convolve10_neon), ALL_SIZES(convolve12_neon) }; #else const ConvolveFunctions convolve8_neon( vpx_convolve_copy_neon, vpx_convolve_avg_neon, vpx_convolve8_horiz_neon, vpx_convolve8_avg_horiz_neon, vpx_convolve8_vert_neon, vpx_convolve8_avg_vert_neon, vpx_convolve8_neon, vpx_convolve8_avg_neon, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_neon, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve_neon[] = { ALL_SIZES(convolve8_neon) }; #endif // CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_neon)); #endif // HAVE_NEON #if HAVE_DSPR2 const ConvolveFunctions convolve8_dspr2( vpx_convolve_copy_dspr2, vpx_convolve_avg_dspr2, vpx_convolve8_horiz_dspr2, vpx_convolve8_avg_horiz_dspr2, vpx_convolve8_vert_dspr2, vpx_convolve8_avg_vert_dspr2, vpx_convolve8_dspr2, vpx_convolve8_avg_dspr2, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve8_dspr2[] = { ALL_SIZES(convolve8_dspr2) }; INSTANTIATE_TEST_CASE_P(DSPR2, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_dspr2)); #endif // HAVE_DSPR2 #if HAVE_MSA const ConvolveFunctions convolve8_msa( vpx_convolve_copy_msa, vpx_convolve_avg_msa, vpx_convolve8_horiz_msa, vpx_convolve8_avg_horiz_msa, vpx_convolve8_vert_msa, vpx_convolve8_avg_vert_msa, vpx_convolve8_msa, vpx_convolve8_avg_msa, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_msa, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve8_msa[] = { ALL_SIZES(convolve8_msa) }; INSTANTIATE_TEST_CASE_P(MSA, ConvolveTest, ::testing::ValuesIn(kArrayConvolve8_msa)); #endif // HAVE_MSA #if HAVE_VSX const ConvolveFunctions convolve8_vsx( vpx_convolve_copy_vsx, vpx_convolve_avg_vsx, vpx_convolve8_horiz_vsx, vpx_convolve8_avg_horiz_vsx, vpx_convolve8_vert_vsx, vpx_convolve8_avg_vert_vsx, vpx_convolve8_vsx, vpx_convolve8_avg_vsx, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve_vsx[] = { ALL_SIZES(convolve8_vsx) }; INSTANTIATE_TEST_CASE_P(VSX, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_vsx)); #endif // HAVE_VSX #if HAVE_MMI const ConvolveFunctions convolve8_mmi( vpx_convolve_copy_c, vpx_convolve_avg_mmi, vpx_convolve8_horiz_mmi, vpx_convolve8_avg_horiz_mmi, vpx_convolve8_vert_mmi, vpx_convolve8_avg_vert_mmi, vpx_convolve8_mmi, vpx_convolve8_avg_mmi, vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); const ConvolveParam kArrayConvolve_mmi[] = { ALL_SIZES(convolve8_mmi) }; INSTANTIATE_TEST_CASE_P(MMI, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_mmi)); #endif // HAVE_MMI } // namespace