ref: 9dbbbd181257cc2a62664a6f52197d466c2c108e
dir: /vpx_dsp/arm/fdct32x32_neon.c/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <arm_neon.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/txfm_common.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/transpose_neon.h" // Most gcc 4.9 distributions outside of Android do not generate correct code // for this function. #if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \ __GNUC__ == 4 && __GNUC_MINOR__ <= 9 void vpx_fdct32x32_neon(const int16_t *input, tran_low_t *output, int stride) { vpx_fdct32x32_c(input, output, stride); } void vpx_fdct32x32_rd_neon(const int16_t *input, tran_low_t *output, int stride) { vpx_fdct32x32_rd_c(input, output, stride); } #else #define LOAD_INCREMENT(src, stride, dest, index) \ do { \ dest[index] = vld1q_s16(src); \ src += stride; \ } while (0) #define ADD_S16(src, index0, index1, dest, index3) \ do { \ dest[index3] = vaddq_s16(src[index0], src[index1]); \ } while (0) #define ADD_SHIFT_S16(src, index0, index1) \ do { \ src[index1] = vshlq_n_s16(vsubq_s16(src[index0], src[index1]), 2); \ } while (0) // Load, cross, and multiply by 4. Load the first 8 and last 8, then the // middle // 16. Doing sets of 16 at a time. Maybe sets of 8 would be better? static INLINE void load(const int16_t *a, int stride, int16x8_t *b) { const int16_t *a_end = a + 24 * stride; int16x8_t c[8]; LOAD_INCREMENT(a, stride, b, 0); LOAD_INCREMENT(a, stride, b, 1); LOAD_INCREMENT(a, stride, b, 2); LOAD_INCREMENT(a, stride, b, 3); LOAD_INCREMENT(a, stride, b, 4); LOAD_INCREMENT(a, stride, b, 5); LOAD_INCREMENT(a, stride, b, 6); LOAD_INCREMENT(a, stride, b, 7); LOAD_INCREMENT(a_end, stride, b, 24); LOAD_INCREMENT(a_end, stride, b, 25); LOAD_INCREMENT(a_end, stride, b, 26); LOAD_INCREMENT(a_end, stride, b, 27); LOAD_INCREMENT(a_end, stride, b, 28); LOAD_INCREMENT(a_end, stride, b, 29); LOAD_INCREMENT(a_end, stride, b, 30); LOAD_INCREMENT(a_end, stride, b, 31); ADD_S16(b, 0, 31, c, 0); ADD_S16(b, 1, 30, c, 1); ADD_S16(b, 2, 29, c, 2); ADD_S16(b, 3, 28, c, 3); ADD_S16(b, 4, 27, c, 4); ADD_S16(b, 5, 26, c, 5); ADD_S16(b, 6, 25, c, 6); ADD_S16(b, 7, 24, c, 7); ADD_SHIFT_S16(b, 7, 24); ADD_SHIFT_S16(b, 6, 25); ADD_SHIFT_S16(b, 5, 26); ADD_SHIFT_S16(b, 4, 27); ADD_SHIFT_S16(b, 3, 28); ADD_SHIFT_S16(b, 2, 29); ADD_SHIFT_S16(b, 1, 30); ADD_SHIFT_S16(b, 0, 31); b[0] = vshlq_n_s16(c[0], 2); b[1] = vshlq_n_s16(c[1], 2); b[2] = vshlq_n_s16(c[2], 2); b[3] = vshlq_n_s16(c[3], 2); b[4] = vshlq_n_s16(c[4], 2); b[5] = vshlq_n_s16(c[5], 2); b[6] = vshlq_n_s16(c[6], 2); b[7] = vshlq_n_s16(c[7], 2); LOAD_INCREMENT(a, stride, b, 8); LOAD_INCREMENT(a, stride, b, 9); LOAD_INCREMENT(a, stride, b, 10); LOAD_INCREMENT(a, stride, b, 11); LOAD_INCREMENT(a, stride, b, 12); LOAD_INCREMENT(a, stride, b, 13); LOAD_INCREMENT(a, stride, b, 14); LOAD_INCREMENT(a, stride, b, 15); LOAD_INCREMENT(a, stride, b, 16); LOAD_INCREMENT(a, stride, b, 17); LOAD_INCREMENT(a, stride, b, 18); LOAD_INCREMENT(a, stride, b, 19); LOAD_INCREMENT(a, stride, b, 20); LOAD_INCREMENT(a, stride, b, 21); LOAD_INCREMENT(a, stride, b, 22); LOAD_INCREMENT(a, stride, b, 23); ADD_S16(b, 8, 23, c, 0); ADD_S16(b, 9, 22, c, 1); ADD_S16(b, 10, 21, c, 2); ADD_S16(b, 11, 20, c, 3); ADD_S16(b, 12, 19, c, 4); ADD_S16(b, 13, 18, c, 5); ADD_S16(b, 14, 17, c, 6); ADD_S16(b, 15, 16, c, 7); ADD_SHIFT_S16(b, 15, 16); ADD_SHIFT_S16(b, 14, 17); ADD_SHIFT_S16(b, 13, 18); ADD_SHIFT_S16(b, 12, 19); ADD_SHIFT_S16(b, 11, 20); ADD_SHIFT_S16(b, 10, 21); ADD_SHIFT_S16(b, 9, 22); ADD_SHIFT_S16(b, 8, 23); b[8] = vshlq_n_s16(c[0], 2); b[9] = vshlq_n_s16(c[1], 2); b[10] = vshlq_n_s16(c[2], 2); b[11] = vshlq_n_s16(c[3], 2); b[12] = vshlq_n_s16(c[4], 2); b[13] = vshlq_n_s16(c[5], 2); b[14] = vshlq_n_s16(c[6], 2); b[15] = vshlq_n_s16(c[7], 2); } #undef LOAD_INCREMENT #undef ADD_S16 #undef ADD_SHIFT_S16 #define STORE_S16(src, index, dest) \ do { \ store_s16q_to_tran_low(dest, src[index]); \ dest += 8; \ } while (0); // Store 32 16x8 values, assuming stride == 32. // Slight twist: store horizontally in blocks of 8. static INLINE void store(tran_low_t *a, const int16x8_t *b) { STORE_S16(b, 0, a); STORE_S16(b, 8, a); STORE_S16(b, 16, a); STORE_S16(b, 24, a); STORE_S16(b, 1, a); STORE_S16(b, 9, a); STORE_S16(b, 17, a); STORE_S16(b, 25, a); STORE_S16(b, 2, a); STORE_S16(b, 10, a); STORE_S16(b, 18, a); STORE_S16(b, 26, a); STORE_S16(b, 3, a); STORE_S16(b, 11, a); STORE_S16(b, 19, a); STORE_S16(b, 27, a); STORE_S16(b, 4, a); STORE_S16(b, 12, a); STORE_S16(b, 20, a); STORE_S16(b, 28, a); STORE_S16(b, 5, a); STORE_S16(b, 13, a); STORE_S16(b, 21, a); STORE_S16(b, 29, a); STORE_S16(b, 6, a); STORE_S16(b, 14, a); STORE_S16(b, 22, a); STORE_S16(b, 30, a); STORE_S16(b, 7, a); STORE_S16(b, 15, a); STORE_S16(b, 23, a); STORE_S16(b, 31, a); } #undef STORE_S16 // fdct_round_shift((a +/- b) * c) static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b, const tran_high_t constant, int16x8_t *add, int16x8_t *sub) { const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant); const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant); const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), constant); const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), constant); const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant); const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant); const int16x4_t rounded0 = vqrshrn_n_s32(sum0, DCT_CONST_BITS); const int16x4_t rounded1 = vqrshrn_n_s32(sum1, DCT_CONST_BITS); const int16x4_t rounded2 = vqrshrn_n_s32(diff0, DCT_CONST_BITS); const int16x4_t rounded3 = vqrshrn_n_s32(diff1, DCT_CONST_BITS); *add = vcombine_s16(rounded0, rounded1); *sub = vcombine_s16(rounded2, rounded3); } // fdct_round_shift(a * c0 +/- b * c1) static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b, const tran_coef_t constant0, const tran_coef_t constant1, int16x8_t *add, int16x8_t *sub) { const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant0); const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant0); const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), constant1); const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), constant1); const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), constant0); const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), constant0); const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant1); const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant1); const int16x4_t rounded0 = vqrshrn_n_s32(sum0, DCT_CONST_BITS); const int16x4_t rounded1 = vqrshrn_n_s32(sum1, DCT_CONST_BITS); const int16x4_t rounded2 = vqrshrn_n_s32(diff0, DCT_CONST_BITS); const int16x4_t rounded3 = vqrshrn_n_s32(diff1, DCT_CONST_BITS); *add = vcombine_s16(rounded0, rounded1); *sub = vcombine_s16(rounded2, rounded3); } // Add 2 if positive, 1 if negative, and shift by 2. // In practice, subtract the sign bit, then shift with rounding. static INLINE int16x8_t sub_round_shift(const int16x8_t a) { const uint16x8_t a_u16 = vreinterpretq_u16_s16(a); const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15); const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16); return vrshrq_n_s16(vsubq_s16(a, a_sign_s16), 2); } static void dct_body_first_pass(const int16x8_t *in, int16x8_t *out) { int16x8_t a[32]; int16x8_t b[32]; // Stage 1: Done as part of the load. // Stage 2. // Mini cross. X the first 16 values and the middle 8 of the second half. a[0] = vaddq_s16(in[0], in[15]); a[1] = vaddq_s16(in[1], in[14]); a[2] = vaddq_s16(in[2], in[13]); a[3] = vaddq_s16(in[3], in[12]); a[4] = vaddq_s16(in[4], in[11]); a[5] = vaddq_s16(in[5], in[10]); a[6] = vaddq_s16(in[6], in[9]); a[7] = vaddq_s16(in[7], in[8]); a[8] = vsubq_s16(in[7], in[8]); a[9] = vsubq_s16(in[6], in[9]); a[10] = vsubq_s16(in[5], in[10]); a[11] = vsubq_s16(in[4], in[11]); a[12] = vsubq_s16(in[3], in[12]); a[13] = vsubq_s16(in[2], in[13]); a[14] = vsubq_s16(in[1], in[14]); a[15] = vsubq_s16(in[0], in[15]); a[16] = in[16]; a[17] = in[17]; a[18] = in[18]; a[19] = in[19]; butterfly_one_coeff(in[27], in[20], cospi_16_64, &a[27], &a[20]); butterfly_one_coeff(in[26], in[21], cospi_16_64, &a[26], &a[21]); butterfly_one_coeff(in[25], in[22], cospi_16_64, &a[25], &a[22]); butterfly_one_coeff(in[24], in[23], cospi_16_64, &a[24], &a[23]); a[28] = in[28]; a[29] = in[29]; a[30] = in[30]; a[31] = in[31]; // Stage 3. b[0] = vaddq_s16(a[0], a[7]); b[1] = vaddq_s16(a[1], a[6]); b[2] = vaddq_s16(a[2], a[5]); b[3] = vaddq_s16(a[3], a[4]); b[4] = vsubq_s16(a[3], a[4]); b[5] = vsubq_s16(a[2], a[5]); b[6] = vsubq_s16(a[1], a[6]); b[7] = vsubq_s16(a[0], a[7]); b[8] = a[8]; b[9] = a[9]; butterfly_one_coeff(a[13], a[10], cospi_16_64, &b[13], &b[10]); butterfly_one_coeff(a[12], a[11], cospi_16_64, &b[12], &b[11]); b[14] = a[14]; b[15] = a[15]; b[16] = vaddq_s16(in[16], a[23]); b[17] = vaddq_s16(in[17], a[22]); b[18] = vaddq_s16(in[18], a[21]); b[19] = vaddq_s16(in[19], a[20]); b[20] = vsubq_s16(in[19], a[20]); b[21] = vsubq_s16(in[18], a[21]); b[22] = vsubq_s16(in[17], a[22]); b[23] = vsubq_s16(in[16], a[23]); b[24] = vsubq_s16(in[31], a[24]); b[25] = vsubq_s16(in[30], a[25]); b[26] = vsubq_s16(in[29], a[26]); b[27] = vsubq_s16(in[28], a[27]); b[28] = vaddq_s16(in[28], a[27]); b[29] = vaddq_s16(in[29], a[26]); b[30] = vaddq_s16(in[30], a[25]); b[31] = vaddq_s16(in[31], a[24]); // Stage 4. a[0] = vaddq_s16(b[0], b[3]); a[1] = vaddq_s16(b[1], b[2]); a[2] = vsubq_s16(b[1], b[2]); a[3] = vsubq_s16(b[0], b[3]); a[4] = b[4]; butterfly_one_coeff(b[6], b[5], cospi_16_64, &a[6], &a[5]); a[7] = b[7]; a[8] = vaddq_s16(b[8], b[11]); a[9] = vaddq_s16(b[9], b[10]); a[10] = vsubq_s16(b[9], b[10]); a[11] = vsubq_s16(b[8], b[11]); a[12] = vsubq_s16(b[15], b[12]); a[13] = vsubq_s16(b[14], b[13]); a[14] = vaddq_s16(b[14], b[13]); a[15] = vaddq_s16(b[15], b[12]); a[16] = b[16]; a[17] = b[17]; butterfly_two_coeff(b[29], b[18], cospi_24_64, cospi_8_64, &a[29], &a[18]); butterfly_two_coeff(b[28], b[19], cospi_24_64, cospi_8_64, &a[28], &a[19]); butterfly_two_coeff(b[27], b[20], -cospi_8_64, cospi_24_64, &a[27], &a[20]); butterfly_two_coeff(b[26], b[21], -cospi_8_64, cospi_24_64, &a[26], &a[21]); a[22] = b[22]; a[23] = b[23]; a[24] = b[24]; a[25] = b[25]; a[30] = b[30]; a[31] = b[31]; // Stage 5. butterfly_one_coeff(a[0], a[1], cospi_16_64, &b[0], &b[1]); butterfly_two_coeff(a[3], a[2], cospi_24_64, cospi_8_64, &b[2], &b[3]); b[4] = vaddq_s16(a[4], a[5]); b[5] = vsubq_s16(a[4], a[5]); b[6] = vsubq_s16(a[7], a[6]); b[7] = vaddq_s16(a[7], a[6]); b[8] = a[8]; butterfly_two_coeff(a[14], a[9], cospi_24_64, cospi_8_64, &b[14], &b[9]); butterfly_two_coeff(a[13], a[10], -cospi_8_64, cospi_24_64, &b[13], &b[10]); b[11] = a[11]; b[12] = a[12]; b[15] = a[15]; b[16] = vaddq_s16(a[19], a[16]); b[17] = vaddq_s16(a[18], a[17]); b[18] = vsubq_s16(a[17], a[18]); b[19] = vsubq_s16(a[16], a[19]); b[20] = vsubq_s16(a[23], a[20]); b[21] = vsubq_s16(a[22], a[21]); b[22] = vaddq_s16(a[21], a[22]); b[23] = vaddq_s16(a[20], a[23]); b[24] = vaddq_s16(a[27], a[24]); b[25] = vaddq_s16(a[26], a[25]); b[26] = vsubq_s16(a[25], a[26]); b[27] = vsubq_s16(a[24], a[27]); b[28] = vsubq_s16(a[31], a[28]); b[29] = vsubq_s16(a[30], a[29]); b[30] = vaddq_s16(a[29], a[30]); b[31] = vaddq_s16(a[28], a[31]); // Stage 6. a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; a[3] = b[3]; butterfly_two_coeff(b[7], b[4], cospi_28_64, cospi_4_64, &a[4], &a[7]); butterfly_two_coeff(b[6], b[5], cospi_12_64, cospi_20_64, &a[5], &a[6]); a[8] = vaddq_s16(b[8], b[9]); a[9] = vsubq_s16(b[8], b[9]); a[10] = vsubq_s16(b[11], b[10]); a[11] = vaddq_s16(b[11], b[10]); a[12] = vaddq_s16(b[12], b[13]); a[13] = vsubq_s16(b[12], b[13]); a[14] = vsubq_s16(b[15], b[14]); a[15] = vaddq_s16(b[15], b[14]); a[16] = b[16]; a[19] = b[19]; a[20] = b[20]; a[23] = b[23]; a[24] = b[24]; a[27] = b[27]; a[28] = b[28]; a[31] = b[31]; butterfly_two_coeff(b[30], b[17], cospi_28_64, cospi_4_64, &a[30], &a[17]); butterfly_two_coeff(b[29], b[18], -cospi_4_64, cospi_28_64, &a[29], &a[18]); butterfly_two_coeff(b[26], b[21], cospi_12_64, cospi_20_64, &a[26], &a[21]); butterfly_two_coeff(b[25], b[22], -cospi_20_64, cospi_12_64, &a[25], &a[22]); // Stage 7. b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3]; b[4] = a[4]; b[5] = a[5]; b[6] = a[6]; b[7] = a[7]; butterfly_two_coeff(a[15], a[8], cospi_30_64, cospi_2_64, &b[8], &b[15]); butterfly_two_coeff(a[14], a[9], cospi_14_64, cospi_18_64, &b[9], &b[14]); butterfly_two_coeff(a[13], a[10], cospi_22_64, cospi_10_64, &b[10], &b[13]); butterfly_two_coeff(a[12], a[11], cospi_6_64, cospi_26_64, &b[11], &b[12]); b[16] = vaddq_s16(a[16], a[17]); b[17] = vsubq_s16(a[16], a[17]); b[18] = vsubq_s16(a[19], a[18]); b[19] = vaddq_s16(a[19], a[18]); b[20] = vaddq_s16(a[20], a[21]); b[21] = vsubq_s16(a[20], a[21]); b[22] = vsubq_s16(a[23], a[22]); b[23] = vaddq_s16(a[23], a[22]); b[24] = vaddq_s16(a[24], a[25]); b[25] = vsubq_s16(a[24], a[25]); b[26] = vsubq_s16(a[27], a[26]); b[27] = vaddq_s16(a[27], a[26]); b[28] = vaddq_s16(a[28], a[29]); b[29] = vsubq_s16(a[28], a[29]); b[30] = vsubq_s16(a[31], a[30]); b[31] = vaddq_s16(a[31], a[30]); // Final stage. // Also compute partial rounding shift: // output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; out[0] = sub_round_shift(b[0]); out[16] = sub_round_shift(b[1]); out[8] = sub_round_shift(b[2]); out[24] = sub_round_shift(b[3]); out[4] = sub_round_shift(b[4]); out[20] = sub_round_shift(b[5]); out[12] = sub_round_shift(b[6]); out[28] = sub_round_shift(b[7]); out[2] = sub_round_shift(b[8]); out[18] = sub_round_shift(b[9]); out[10] = sub_round_shift(b[10]); out[26] = sub_round_shift(b[11]); out[6] = sub_round_shift(b[12]); out[22] = sub_round_shift(b[13]); out[14] = sub_round_shift(b[14]); out[30] = sub_round_shift(b[15]); butterfly_two_coeff(b[31], b[16], cospi_31_64, cospi_1_64, &a[1], &a[31]); out[1] = sub_round_shift(a[1]); out[31] = sub_round_shift(a[31]); butterfly_two_coeff(b[30], b[17], cospi_15_64, cospi_17_64, &a[17], &a[15]); out[17] = sub_round_shift(a[17]); out[15] = sub_round_shift(a[15]); butterfly_two_coeff(b[29], b[18], cospi_23_64, cospi_9_64, &a[9], &a[23]); out[9] = sub_round_shift(a[9]); out[23] = sub_round_shift(a[23]); butterfly_two_coeff(b[28], b[19], cospi_7_64, cospi_25_64, &a[25], &a[7]); out[25] = sub_round_shift(a[25]); out[7] = sub_round_shift(a[7]); butterfly_two_coeff(b[27], b[20], cospi_27_64, cospi_5_64, &a[5], &a[27]); out[5] = sub_round_shift(a[5]); out[27] = sub_round_shift(a[27]); butterfly_two_coeff(b[26], b[21], cospi_11_64, cospi_21_64, &a[21], &a[11]); out[21] = sub_round_shift(a[21]); out[11] = sub_round_shift(a[11]); butterfly_two_coeff(b[25], b[22], cospi_19_64, cospi_13_64, &a[13], &a[19]); out[13] = sub_round_shift(a[13]); out[19] = sub_round_shift(a[19]); butterfly_two_coeff(b[24], b[23], cospi_3_64, cospi_29_64, &a[29], &a[3]); out[29] = sub_round_shift(a[29]); out[3] = sub_round_shift(a[3]); } #define PASS_THROUGH(src, dst, element) \ do { \ dst##_lo[element] = src##_lo[element]; \ dst##_hi[element] = src##_hi[element]; \ } while (0) #define ADD_S16_S32(a, left_index, right_index, b, b_index) \ do { \ b##_lo[b_index] = \ vaddl_s16(vget_low_s16(a[left_index]), vget_low_s16(a[right_index])); \ b##_hi[b_index] = vaddl_s16(vget_high_s16(a[left_index]), \ vget_high_s16(a[right_index])); \ } while (0) #define SUB_S16_S32(a, left_index, right_index, b, b_index) \ do { \ b##_lo[b_index] = \ vsubl_s16(vget_low_s16(a[left_index]), vget_low_s16(a[right_index])); \ b##_hi[b_index] = vsubl_s16(vget_high_s16(a[left_index]), \ vget_high_s16(a[right_index])); \ } while (0) #define ADDW_S16_S32(a, a_index, b, b_index, c, c_index) \ do { \ c##_lo[c_index] = vaddw_s16(a##_lo[a_index], vget_low_s16(b[b_index])); \ c##_hi[c_index] = vaddw_s16(a##_hi[a_index], vget_high_s16(b[b_index])); \ } while (0) #define SUBW_S16_S32(a, a_index, b, b_index, temp, temp_index, c, c_index) \ do { \ temp##_lo[temp_index] = vmovl_s16(vget_low_s16(a[a_index])); \ temp##_hi[temp_index] = vmovl_s16(vget_high_s16(a[a_index])); \ c##_lo[c_index] = vsubq_s32(temp##_lo[temp_index], b##_lo[b_index]); \ c##_hi[c_index] = vsubq_s32(temp##_hi[temp_index], b##_hi[b_index]); \ } while (0) #define ADD_S32(a, left_index, right_index, b, b_index) \ do { \ b##_lo[b_index] = vaddq_s32(a##_lo[left_index], a##_lo[right_index]); \ b##_hi[b_index] = vaddq_s32(a##_hi[left_index], a##_hi[right_index]); \ } while (0) #define SUB_S32(a, left_index, right_index, b, b_index) \ do { \ b##_lo[b_index] = vsubq_s32(a##_lo[left_index], a##_lo[right_index]); \ b##_hi[b_index] = vsubq_s32(a##_hi[left_index], a##_hi[right_index]); \ } while (0) // Like butterfly_one_coeff, but don't narrow results. static INLINE void butterfly_one_coeff_s16_s32( const int16x8_t a, const int16x8_t b, const tran_high_t constant, int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) { const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant); const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant); const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), constant); const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), constant); const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant); const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant); *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); } #define BUTTERFLY_ONE_S16_S32(a, left_index, right_index, constant, b, \ add_index, sub_index) \ do { \ butterfly_one_coeff_s16_s32(a[left_index], a[right_index], constant, \ &b##_lo[add_index], &b##_hi[add_index], \ &b##_lo[sub_index], &b##_hi[sub_index]); \ } while (0) // Like butterfly_one_coeff, but with s32. static INLINE void butterfly_one_coeff_s32( const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo, const int32x4_t b_hi, const int32_t constant, int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) { const int32x4_t a_lo_0 = vmulq_n_s32(a_lo, constant); const int32x4_t a_hi_0 = vmulq_n_s32(a_hi, constant); const int32x4_t sum0 = vmlaq_n_s32(a_lo_0, b_lo, constant); const int32x4_t sum1 = vmlaq_n_s32(a_hi_0, b_hi, constant); const int32x4_t diff0 = vmlsq_n_s32(a_lo_0, b_lo, constant); const int32x4_t diff1 = vmlsq_n_s32(a_hi_0, b_hi, constant); *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); } #define BUTTERFLY_ONE_S32(a, left_index, right_index, constant, b, add_index, \ sub_index) \ do { \ butterfly_one_coeff_s32(a##_lo[left_index], a##_hi[left_index], \ a##_lo[right_index], a##_hi[right_index], \ constant, &b##_lo[add_index], &b##_hi[add_index], \ &b##_lo[sub_index], &b##_hi[sub_index]); \ } while (0) // Like butterfly_two_coeff, but with s32. static INLINE void butterfly_two_coeff_s32( const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo, const int32x4_t b_hi, const int32_t constant0, const int32_t constant1, int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) { const int32x4_t a0 = vmulq_n_s32(a_lo, constant0); const int32x4_t a1 = vmulq_n_s32(a_hi, constant0); const int32x4_t a2 = vmulq_n_s32(a_lo, constant1); const int32x4_t a3 = vmulq_n_s32(a_hi, constant1); const int32x4_t sum0 = vmlaq_n_s32(a2, b_lo, constant0); const int32x4_t sum1 = vmlaq_n_s32(a3, b_hi, constant0); const int32x4_t diff0 = vmlsq_n_s32(a0, b_lo, constant1); const int32x4_t diff1 = vmlsq_n_s32(a1, b_hi, constant1); *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); } #define BUTTERFLY_TWO_S32(a, left_index, right_index, left_constant, \ right_constant, b, add_index, sub_index) \ do { \ butterfly_two_coeff_s32(a##_lo[left_index], a##_hi[left_index], \ a##_lo[right_index], a##_hi[right_index], \ left_constant, right_constant, &b##_lo[add_index], \ &b##_hi[add_index], &b##_lo[sub_index], \ &b##_hi[sub_index]); \ } while (0) // Add 1 if positive, 2 if negative, and shift by 2. // In practice, add 1, then add the sign bit, then shift without rounding. static INLINE int16x8_t add_round_shift_s32(const int32x4_t a_lo, const int32x4_t a_hi) { const int32x4_t one = vdupq_n_s32(1); const uint32x4_t a_lo_u32 = vreinterpretq_u32_s32(a_lo); const uint32x4_t a_lo_sign_u32 = vshrq_n_u32(a_lo_u32, 31); const int32x4_t a_lo_sign_s32 = vreinterpretq_s32_u32(a_lo_sign_u32); const int16x4_t b_lo = vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_lo, a_lo_sign_s32), one), 2); const uint32x4_t a_hi_u32 = vreinterpretq_u32_s32(a_hi); const uint32x4_t a_hi_sign_u32 = vshrq_n_u32(a_hi_u32, 31); const int32x4_t a_hi_sign_s32 = vreinterpretq_s32_u32(a_hi_sign_u32); const int16x4_t b_hi = vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_hi, a_hi_sign_s32), one), 2); return vcombine_s16(b_lo, b_hi); } static void dct_body_second_pass(const int16x8_t *in, int16x8_t *out) { int16x8_t a[32]; int16x8_t b[32]; int32x4_t c_lo[32]; int32x4_t c_hi[32]; int32x4_t d_lo[32]; int32x4_t d_hi[32]; // Stage 1. Done as part of the load for the first pass. a[0] = vaddq_s16(in[0], in[31]); a[1] = vaddq_s16(in[1], in[30]); a[2] = vaddq_s16(in[2], in[29]); a[3] = vaddq_s16(in[3], in[28]); a[4] = vaddq_s16(in[4], in[27]); a[5] = vaddq_s16(in[5], in[26]); a[6] = vaddq_s16(in[6], in[25]); a[7] = vaddq_s16(in[7], in[24]); a[8] = vaddq_s16(in[8], in[23]); a[9] = vaddq_s16(in[9], in[22]); a[10] = vaddq_s16(in[10], in[21]); a[11] = vaddq_s16(in[11], in[20]); a[12] = vaddq_s16(in[12], in[19]); a[13] = vaddq_s16(in[13], in[18]); a[14] = vaddq_s16(in[14], in[17]); a[15] = vaddq_s16(in[15], in[16]); a[16] = vsubq_s16(in[15], in[16]); a[17] = vsubq_s16(in[14], in[17]); a[18] = vsubq_s16(in[13], in[18]); a[19] = vsubq_s16(in[12], in[19]); a[20] = vsubq_s16(in[11], in[20]); a[21] = vsubq_s16(in[10], in[21]); a[22] = vsubq_s16(in[9], in[22]); a[23] = vsubq_s16(in[8], in[23]); a[24] = vsubq_s16(in[7], in[24]); a[25] = vsubq_s16(in[6], in[25]); a[26] = vsubq_s16(in[5], in[26]); a[27] = vsubq_s16(in[4], in[27]); a[28] = vsubq_s16(in[3], in[28]); a[29] = vsubq_s16(in[2], in[29]); a[30] = vsubq_s16(in[1], in[30]); a[31] = vsubq_s16(in[0], in[31]); // Stage 2. b[0] = vaddq_s16(a[0], a[15]); b[1] = vaddq_s16(a[1], a[14]); b[2] = vaddq_s16(a[2], a[13]); b[3] = vaddq_s16(a[3], a[12]); b[4] = vaddq_s16(a[4], a[11]); b[5] = vaddq_s16(a[5], a[10]); b[6] = vaddq_s16(a[6], a[9]); b[7] = vaddq_s16(a[7], a[8]); b[8] = vsubq_s16(a[7], a[8]); b[9] = vsubq_s16(a[6], a[9]); b[10] = vsubq_s16(a[5], a[10]); b[11] = vsubq_s16(a[4], a[11]); b[12] = vsubq_s16(a[3], a[12]); b[13] = vsubq_s16(a[2], a[13]); b[14] = vsubq_s16(a[1], a[14]); b[15] = vsubq_s16(a[0], a[15]); b[16] = a[16]; b[17] = a[17]; b[18] = a[18]; b[19] = a[19]; butterfly_one_coeff(a[27], a[20], cospi_16_64, &b[27], &b[20]); butterfly_one_coeff(a[26], a[21], cospi_16_64, &b[26], &b[21]); butterfly_one_coeff(a[25], a[22], cospi_16_64, &b[25], &b[22]); butterfly_one_coeff(a[24], a[23], cospi_16_64, &b[24], &b[23]); b[28] = a[28]; b[29] = a[29]; b[30] = a[30]; b[31] = a[31]; // Stage 3. With extreme values for input this calculation rolls over int16_t. // The sources for b[0] get added multiple times and, through testing, have // been shown to overflow starting here. ADD_S16_S32(b, 0, 7, c, 0); ADD_S16_S32(b, 1, 6, c, 1); ADD_S16_S32(b, 2, 5, c, 2); ADD_S16_S32(b, 3, 4, c, 3); SUB_S16_S32(b, 3, 4, c, 4); SUB_S16_S32(b, 2, 5, c, 5); SUB_S16_S32(b, 1, 6, c, 6); SUB_S16_S32(b, 0, 7, c, 7); a[8] = b[8]; a[9] = b[9]; BUTTERFLY_ONE_S16_S32(b, 13, 10, cospi_16_64, c, 13, 10); BUTTERFLY_ONE_S16_S32(b, 12, 11, cospi_16_64, c, 12, 11); a[14] = b[14]; a[15] = b[15]; ADD_S16_S32(b, 16, 23, c, 16); ADD_S16_S32(b, 17, 22, c, 17); ADD_S16_S32(b, 18, 21, c, 18); ADD_S16_S32(b, 19, 20, c, 19); SUB_S16_S32(b, 19, 20, c, 20); SUB_S16_S32(b, 18, 21, c, 21); SUB_S16_S32(b, 17, 22, c, 22); SUB_S16_S32(b, 16, 23, c, 23); SUB_S16_S32(b, 31, 24, c, 24); SUB_S16_S32(b, 30, 25, c, 25); SUB_S16_S32(b, 29, 26, c, 26); SUB_S16_S32(b, 28, 27, c, 27); ADD_S16_S32(b, 28, 27, c, 28); ADD_S16_S32(b, 29, 26, c, 29); ADD_S16_S32(b, 30, 25, c, 30); ADD_S16_S32(b, 31, 24, c, 31); // Stage 4. ADD_S32(c, 0, 3, d, 0); ADD_S32(c, 1, 2, d, 1); SUB_S32(c, 1, 2, d, 2); SUB_S32(c, 0, 3, d, 3); PASS_THROUGH(c, d, 4); BUTTERFLY_ONE_S32(c, 6, 5, cospi_16_64, d, 6, 5); PASS_THROUGH(c, d, 7); ADDW_S16_S32(c, 11, a, 8, d, 8); ADDW_S16_S32(c, 10, a, 9, d, 9); SUBW_S16_S32(a, 9, c, 10, c, 9, d, 10); SUBW_S16_S32(a, 8, c, 11, c, 8, d, 11); SUBW_S16_S32(a, 15, c, 12, c, 15, d, 12); SUBW_S16_S32(a, 14, c, 13, c, 14, d, 13); ADDW_S16_S32(c, 13, b, 14, d, 14); ADDW_S16_S32(c, 12, b, 15, d, 15); PASS_THROUGH(c, d, 16); PASS_THROUGH(c, d, 17); BUTTERFLY_TWO_S32(c, 29, 18, cospi_24_64, cospi_8_64, d, 29, 18); BUTTERFLY_TWO_S32(c, 28, 19, cospi_24_64, cospi_8_64, d, 28, 19); BUTTERFLY_TWO_S32(c, 27, 20, -cospi_8_64, cospi_24_64, d, 27, 20); BUTTERFLY_TWO_S32(c, 26, 21, -cospi_8_64, cospi_24_64, d, 26, 21); PASS_THROUGH(c, d, 22); PASS_THROUGH(c, d, 23); PASS_THROUGH(c, d, 24); PASS_THROUGH(c, d, 25); PASS_THROUGH(c, d, 30); PASS_THROUGH(c, d, 31); // Stage 5. BUTTERFLY_ONE_S32(d, 0, 1, cospi_16_64, c, 0, 1); BUTTERFLY_TWO_S32(d, 3, 2, cospi_24_64, cospi_8_64, c, 2, 3); ADD_S32(d, 4, 5, c, 4); SUB_S32(d, 4, 5, c, 5); SUB_S32(d, 7, 6, c, 6); ADD_S32(d, 7, 6, c, 7); PASS_THROUGH(d, c, 8); BUTTERFLY_TWO_S32(d, 14, 9, cospi_24_64, cospi_8_64, c, 14, 9); BUTTERFLY_TWO_S32(d, 13, 10, -cospi_8_64, cospi_24_64, c, 13, 10); PASS_THROUGH(d, c, 11); PASS_THROUGH(d, c, 12); PASS_THROUGH(d, c, 15); ADD_S32(d, 16, 19, c, 16); ADD_S32(d, 17, 18, c, 17); SUB_S32(d, 17, 18, c, 18); SUB_S32(d, 16, 19, c, 19); SUB_S32(d, 23, 20, c, 20); SUB_S32(d, 22, 21, c, 21); ADD_S32(d, 22, 21, c, 22); ADD_S32(d, 23, 20, c, 23); ADD_S32(d, 24, 27, c, 24); ADD_S32(d, 25, 26, c, 25); SUB_S32(d, 25, 26, c, 26); SUB_S32(d, 24, 27, c, 27); SUB_S32(d, 31, 28, c, 28); SUB_S32(d, 30, 29, c, 29); ADD_S32(d, 30, 29, c, 30); ADD_S32(d, 31, 28, c, 31); // Stage 6. PASS_THROUGH(c, d, 0); PASS_THROUGH(c, d, 1); PASS_THROUGH(c, d, 2); PASS_THROUGH(c, d, 3); BUTTERFLY_TWO_S32(c, 7, 4, cospi_28_64, cospi_4_64, d, 4, 7); BUTTERFLY_TWO_S32(c, 6, 5, cospi_12_64, cospi_20_64, d, 5, 6); ADD_S32(c, 8, 9, d, 8); SUB_S32(c, 8, 9, d, 9); SUB_S32(c, 11, 10, d, 10); ADD_S32(c, 11, 10, d, 11); ADD_S32(c, 12, 13, d, 12); SUB_S32(c, 12, 13, d, 13); SUB_S32(c, 15, 14, d, 14); ADD_S32(c, 15, 14, d, 15); PASS_THROUGH(c, d, 16); PASS_THROUGH(c, d, 19); PASS_THROUGH(c, d, 20); PASS_THROUGH(c, d, 23); PASS_THROUGH(c, d, 24); PASS_THROUGH(c, d, 27); PASS_THROUGH(c, d, 28); PASS_THROUGH(c, d, 31); BUTTERFLY_TWO_S32(c, 30, 17, cospi_28_64, cospi_4_64, d, 30, 17); BUTTERFLY_TWO_S32(c, 29, 18, -cospi_4_64, cospi_28_64, d, 29, 18); BUTTERFLY_TWO_S32(c, 26, 21, cospi_12_64, cospi_20_64, d, 26, 21); BUTTERFLY_TWO_S32(c, 25, 22, -cospi_20_64, cospi_12_64, d, 25, 22); // Stage 7. PASS_THROUGH(d, c, 0); PASS_THROUGH(d, c, 1); PASS_THROUGH(d, c, 2); PASS_THROUGH(d, c, 3); PASS_THROUGH(d, c, 4); PASS_THROUGH(d, c, 5); PASS_THROUGH(d, c, 6); PASS_THROUGH(d, c, 7); BUTTERFLY_TWO_S32(d, 15, 8, cospi_30_64, cospi_2_64, c, 8, 15); BUTTERFLY_TWO_S32(d, 14, 9, cospi_14_64, cospi_18_64, c, 9, 14); BUTTERFLY_TWO_S32(d, 13, 10, cospi_22_64, cospi_10_64, c, 10, 13); BUTTERFLY_TWO_S32(d, 12, 11, cospi_6_64, cospi_26_64, c, 11, 12); ADD_S32(d, 16, 17, c, 16); SUB_S32(d, 16, 17, c, 17); SUB_S32(d, 19, 18, c, 18); ADD_S32(d, 19, 18, c, 19); ADD_S32(d, 20, 21, c, 20); SUB_S32(d, 20, 21, c, 21); SUB_S32(d, 23, 22, c, 22); ADD_S32(d, 23, 22, c, 23); ADD_S32(d, 24, 25, c, 24); SUB_S32(d, 24, 25, c, 25); SUB_S32(d, 27, 26, c, 26); ADD_S32(d, 27, 26, c, 27); ADD_S32(d, 28, 29, c, 28); SUB_S32(d, 28, 29, c, 29); SUB_S32(d, 31, 30, c, 30); ADD_S32(d, 31, 30, c, 31); // Final stage. // Roll rounding into this function so we can pass back int16x8. out[0] = add_round_shift_s32(c_lo[0], c_hi[0]); out[16] = add_round_shift_s32(c_lo[1], c_hi[1]); out[8] = add_round_shift_s32(c_lo[2], c_hi[2]); out[24] = add_round_shift_s32(c_lo[3], c_hi[3]); out[4] = add_round_shift_s32(c_lo[4], c_hi[4]); out[20] = add_round_shift_s32(c_lo[5], c_hi[5]); out[12] = add_round_shift_s32(c_lo[6], c_hi[6]); out[28] = add_round_shift_s32(c_lo[7], c_hi[7]); out[2] = add_round_shift_s32(c_lo[8], c_hi[8]); out[18] = add_round_shift_s32(c_lo[9], c_hi[9]); out[10] = add_round_shift_s32(c_lo[10], c_hi[10]); out[26] = add_round_shift_s32(c_lo[11], c_hi[11]); out[6] = add_round_shift_s32(c_lo[12], c_hi[12]); out[22] = add_round_shift_s32(c_lo[13], c_hi[13]); out[14] = add_round_shift_s32(c_lo[14], c_hi[14]); out[30] = add_round_shift_s32(c_lo[15], c_hi[15]); BUTTERFLY_TWO_S32(c, 31, 16, cospi_31_64, cospi_1_64, d, 1, 31); out[1] = add_round_shift_s32(d_lo[1], d_hi[1]); out[31] = add_round_shift_s32(d_lo[31], d_hi[31]); BUTTERFLY_TWO_S32(c, 30, 17, cospi_15_64, cospi_17_64, d, 17, 15); out[17] = add_round_shift_s32(d_lo[17], d_hi[17]); out[15] = add_round_shift_s32(d_lo[15], d_hi[15]); BUTTERFLY_TWO_S32(c, 29, 18, cospi_23_64, cospi_9_64, d, 9, 23); out[9] = add_round_shift_s32(d_lo[9], d_hi[9]); out[23] = add_round_shift_s32(d_lo[23], d_hi[23]); BUTTERFLY_TWO_S32(c, 28, 19, cospi_7_64, cospi_25_64, d, 25, 7); out[25] = add_round_shift_s32(d_lo[25], d_hi[25]); out[7] = add_round_shift_s32(d_lo[7], d_hi[7]); BUTTERFLY_TWO_S32(c, 27, 20, cospi_27_64, cospi_5_64, d, 5, 27); out[5] = add_round_shift_s32(d_lo[5], d_hi[5]); out[27] = add_round_shift_s32(d_lo[27], d_hi[27]); BUTTERFLY_TWO_S32(c, 26, 21, cospi_11_64, cospi_21_64, d, 21, 11); out[21] = add_round_shift_s32(d_lo[21], d_hi[21]); out[11] = add_round_shift_s32(d_lo[11], d_hi[11]); BUTTERFLY_TWO_S32(c, 25, 22, cospi_19_64, cospi_13_64, d, 13, 19); out[13] = add_round_shift_s32(d_lo[13], d_hi[13]); out[19] = add_round_shift_s32(d_lo[19], d_hi[19]); BUTTERFLY_TWO_S32(c, 24, 23, cospi_3_64, cospi_29_64, d, 29, 3); out[29] = add_round_shift_s32(d_lo[29], d_hi[29]); out[3] = add_round_shift_s32(d_lo[3], d_hi[3]); } // Add 1 if positive, 2 if negative, and shift by 2. // In practice, add 1, then add the sign bit, then shift without rounding. static INLINE int16x8_t add_round_shift_s16(const int16x8_t a) { const int16x8_t one = vdupq_n_s16(1); const uint16x8_t a_u16 = vreinterpretq_u16_s16(a); const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15); const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16); return vshrq_n_s16(vaddq_s16(vaddq_s16(a, a_sign_s16), one), 2); } static void dct_body_second_pass_rd(const int16x8_t *in, int16x8_t *out) { int16x8_t a[32]; int16x8_t b[32]; // Stage 1. Done as part of the load for the first pass. a[0] = vaddq_s16(in[0], in[31]); a[1] = vaddq_s16(in[1], in[30]); a[2] = vaddq_s16(in[2], in[29]); a[3] = vaddq_s16(in[3], in[28]); a[4] = vaddq_s16(in[4], in[27]); a[5] = vaddq_s16(in[5], in[26]); a[6] = vaddq_s16(in[6], in[25]); a[7] = vaddq_s16(in[7], in[24]); a[8] = vaddq_s16(in[8], in[23]); a[9] = vaddq_s16(in[9], in[22]); a[10] = vaddq_s16(in[10], in[21]); a[11] = vaddq_s16(in[11], in[20]); a[12] = vaddq_s16(in[12], in[19]); a[13] = vaddq_s16(in[13], in[18]); a[14] = vaddq_s16(in[14], in[17]); a[15] = vaddq_s16(in[15], in[16]); a[16] = vsubq_s16(in[15], in[16]); a[17] = vsubq_s16(in[14], in[17]); a[18] = vsubq_s16(in[13], in[18]); a[19] = vsubq_s16(in[12], in[19]); a[20] = vsubq_s16(in[11], in[20]); a[21] = vsubq_s16(in[10], in[21]); a[22] = vsubq_s16(in[9], in[22]); a[23] = vsubq_s16(in[8], in[23]); a[24] = vsubq_s16(in[7], in[24]); a[25] = vsubq_s16(in[6], in[25]); a[26] = vsubq_s16(in[5], in[26]); a[27] = vsubq_s16(in[4], in[27]); a[28] = vsubq_s16(in[3], in[28]); a[29] = vsubq_s16(in[2], in[29]); a[30] = vsubq_s16(in[1], in[30]); a[31] = vsubq_s16(in[0], in[31]); // Stage 2. // For the "rd" version, all the values are rounded down after stage 2 to keep // the values in 16 bits. b[0] = add_round_shift_s16(vaddq_s16(a[0], a[15])); b[1] = add_round_shift_s16(vaddq_s16(a[1], a[14])); b[2] = add_round_shift_s16(vaddq_s16(a[2], a[13])); b[3] = add_round_shift_s16(vaddq_s16(a[3], a[12])); b[4] = add_round_shift_s16(vaddq_s16(a[4], a[11])); b[5] = add_round_shift_s16(vaddq_s16(a[5], a[10])); b[6] = add_round_shift_s16(vaddq_s16(a[6], a[9])); b[7] = add_round_shift_s16(vaddq_s16(a[7], a[8])); b[8] = add_round_shift_s16(vsubq_s16(a[7], a[8])); b[9] = add_round_shift_s16(vsubq_s16(a[6], a[9])); b[10] = add_round_shift_s16(vsubq_s16(a[5], a[10])); b[11] = add_round_shift_s16(vsubq_s16(a[4], a[11])); b[12] = add_round_shift_s16(vsubq_s16(a[3], a[12])); b[13] = add_round_shift_s16(vsubq_s16(a[2], a[13])); b[14] = add_round_shift_s16(vsubq_s16(a[1], a[14])); b[15] = add_round_shift_s16(vsubq_s16(a[0], a[15])); b[16] = add_round_shift_s16(a[16]); b[17] = add_round_shift_s16(a[17]); b[18] = add_round_shift_s16(a[18]); b[19] = add_round_shift_s16(a[19]); butterfly_one_coeff(a[27], a[20], cospi_16_64, &b[27], &b[20]); butterfly_one_coeff(a[26], a[21], cospi_16_64, &b[26], &b[21]); butterfly_one_coeff(a[25], a[22], cospi_16_64, &b[25], &b[22]); butterfly_one_coeff(a[24], a[23], cospi_16_64, &b[24], &b[23]); b[20] = add_round_shift_s16(b[20]); b[21] = add_round_shift_s16(b[21]); b[22] = add_round_shift_s16(b[22]); b[23] = add_round_shift_s16(b[23]); b[24] = add_round_shift_s16(b[24]); b[25] = add_round_shift_s16(b[25]); b[26] = add_round_shift_s16(b[26]); b[27] = add_round_shift_s16(b[27]); b[28] = add_round_shift_s16(a[28]); b[29] = add_round_shift_s16(a[29]); b[30] = add_round_shift_s16(a[30]); b[31] = add_round_shift_s16(a[31]); // Stage 3. a[0] = vaddq_s16(b[0], b[7]); a[1] = vaddq_s16(b[1], b[6]); a[2] = vaddq_s16(b[2], b[5]); a[3] = vaddq_s16(b[3], b[4]); a[4] = vsubq_s16(b[3], b[4]); a[5] = vsubq_s16(b[2], b[5]); a[6] = vsubq_s16(b[1], b[6]); a[7] = vsubq_s16(b[0], b[7]); a[8] = b[8]; a[9] = b[9]; butterfly_one_coeff(b[13], b[10], cospi_16_64, &a[13], &a[10]); butterfly_one_coeff(b[12], b[11], cospi_16_64, &a[12], &a[11]); a[14] = b[14]; a[15] = b[15]; a[16] = vaddq_s16(b[16], b[23]); a[17] = vaddq_s16(b[17], b[22]); a[18] = vaddq_s16(b[18], b[21]); a[19] = vaddq_s16(b[19], b[20]); a[20] = vsubq_s16(b[19], b[20]); a[21] = vsubq_s16(b[18], b[21]); a[22] = vsubq_s16(b[17], b[22]); a[23] = vsubq_s16(b[16], b[23]); a[24] = vsubq_s16(b[31], b[24]); a[25] = vsubq_s16(b[30], b[25]); a[26] = vsubq_s16(b[29], b[26]); a[27] = vsubq_s16(b[28], b[27]); a[28] = vaddq_s16(b[28], b[27]); a[29] = vaddq_s16(b[29], b[26]); a[30] = vaddq_s16(b[30], b[25]); a[31] = vaddq_s16(b[31], b[24]); // Stage 4. b[0] = vaddq_s16(a[0], a[3]); b[1] = vaddq_s16(a[1], a[2]); b[2] = vsubq_s16(a[1], a[2]); b[3] = vsubq_s16(a[0], a[3]); b[4] = a[4]; butterfly_one_coeff(a[6], a[5], cospi_16_64, &b[6], &b[5]); b[7] = a[7]; b[8] = vaddq_s16(a[8], a[11]); b[9] = vaddq_s16(a[9], a[10]); b[10] = vsubq_s16(a[9], a[10]); b[11] = vsubq_s16(a[8], a[11]); b[12] = vsubq_s16(a[15], a[12]); b[13] = vsubq_s16(a[14], a[13]); b[14] = vaddq_s16(a[14], a[13]); b[15] = vaddq_s16(a[15], a[12]); b[16] = a[16]; b[17] = a[17]; butterfly_two_coeff(a[29], a[18], cospi_24_64, cospi_8_64, &b[29], &b[18]); butterfly_two_coeff(a[28], a[19], cospi_24_64, cospi_8_64, &b[28], &b[19]); butterfly_two_coeff(a[27], a[20], -cospi_8_64, cospi_24_64, &b[27], &b[20]); butterfly_two_coeff(a[26], a[21], -cospi_8_64, cospi_24_64, &b[26], &b[21]); b[22] = a[22]; b[23] = a[23]; b[24] = a[24]; b[25] = a[25]; b[30] = a[30]; b[31] = a[31]; // Stage 5. butterfly_one_coeff(b[0], b[1], cospi_16_64, &a[0], &a[1]); butterfly_two_coeff(b[3], b[2], cospi_24_64, cospi_8_64, &a[2], &a[3]); a[4] = vaddq_s16(b[4], b[5]); a[5] = vsubq_s16(b[4], b[5]); a[6] = vsubq_s16(b[7], b[6]); a[7] = vaddq_s16(b[7], b[6]); a[8] = b[8]; butterfly_two_coeff(b[14], b[9], cospi_24_64, cospi_8_64, &a[14], &a[9]); butterfly_two_coeff(b[13], b[10], -cospi_8_64, cospi_24_64, &a[13], &a[10]); a[11] = b[11]; a[12] = b[12]; a[15] = b[15]; a[16] = vaddq_s16(b[19], b[16]); a[17] = vaddq_s16(b[18], b[17]); a[18] = vsubq_s16(b[17], b[18]); a[19] = vsubq_s16(b[16], b[19]); a[20] = vsubq_s16(b[23], b[20]); a[21] = vsubq_s16(b[22], b[21]); a[22] = vaddq_s16(b[21], b[22]); a[23] = vaddq_s16(b[20], b[23]); a[24] = vaddq_s16(b[27], b[24]); a[25] = vaddq_s16(b[26], b[25]); a[26] = vsubq_s16(b[25], b[26]); a[27] = vsubq_s16(b[24], b[27]); a[28] = vsubq_s16(b[31], b[28]); a[29] = vsubq_s16(b[30], b[29]); a[30] = vaddq_s16(b[29], b[30]); a[31] = vaddq_s16(b[28], b[31]); // Stage 6. b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3]; butterfly_two_coeff(a[7], a[4], cospi_28_64, cospi_4_64, &b[4], &b[7]); butterfly_two_coeff(a[6], a[5], cospi_12_64, cospi_20_64, &b[5], &b[6]); b[8] = vaddq_s16(a[8], a[9]); b[9] = vsubq_s16(a[8], a[9]); b[10] = vsubq_s16(a[11], a[10]); b[11] = vaddq_s16(a[11], a[10]); b[12] = vaddq_s16(a[12], a[13]); b[13] = vsubq_s16(a[12], a[13]); b[14] = vsubq_s16(a[15], a[14]); b[15] = vaddq_s16(a[15], a[14]); b[16] = a[16]; b[19] = a[19]; b[20] = a[20]; b[23] = a[23]; b[24] = a[24]; b[27] = a[27]; b[28] = a[28]; b[31] = a[31]; butterfly_two_coeff(a[30], a[17], cospi_28_64, cospi_4_64, &b[30], &b[17]); butterfly_two_coeff(a[29], a[18], -cospi_4_64, cospi_28_64, &b[29], &b[18]); butterfly_two_coeff(a[26], a[21], cospi_12_64, cospi_20_64, &b[26], &b[21]); butterfly_two_coeff(a[25], a[22], -cospi_20_64, cospi_12_64, &b[25], &b[22]); // Stage 7. a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; a[3] = b[3]; a[4] = b[4]; a[5] = b[5]; a[6] = b[6]; a[7] = b[7]; butterfly_two_coeff(b[15], b[8], cospi_30_64, cospi_2_64, &a[8], &a[15]); butterfly_two_coeff(b[14], b[9], cospi_14_64, cospi_18_64, &a[9], &a[14]); butterfly_two_coeff(b[13], b[10], cospi_22_64, cospi_10_64, &a[10], &a[13]); butterfly_two_coeff(b[12], b[11], cospi_6_64, cospi_26_64, &a[11], &a[12]); a[16] = vaddq_s16(b[16], b[17]); a[17] = vsubq_s16(b[16], b[17]); a[18] = vsubq_s16(b[19], b[18]); a[19] = vaddq_s16(b[19], b[18]); a[20] = vaddq_s16(b[20], b[21]); a[21] = vsubq_s16(b[20], b[21]); a[22] = vsubq_s16(b[23], b[22]); a[23] = vaddq_s16(b[23], b[22]); a[24] = vaddq_s16(b[24], b[25]); a[25] = vsubq_s16(b[24], b[25]); a[26] = vsubq_s16(b[27], b[26]); a[27] = vaddq_s16(b[27], b[26]); a[28] = vaddq_s16(b[28], b[29]); a[29] = vsubq_s16(b[28], b[29]); a[30] = vsubq_s16(b[31], b[30]); a[31] = vaddq_s16(b[31], b[30]); // Final stage. out[0] = a[0]; out[16] = a[1]; out[8] = a[2]; out[24] = a[3]; out[4] = a[4]; out[20] = a[5]; out[12] = a[6]; out[28] = a[7]; out[2] = a[8]; out[18] = a[9]; out[10] = a[10]; out[26] = a[11]; out[6] = a[12]; out[22] = a[13]; out[14] = a[14]; out[30] = a[15]; butterfly_two_coeff(a[31], a[16], cospi_31_64, cospi_1_64, &out[1], &out[31]); butterfly_two_coeff(a[30], a[17], cospi_15_64, cospi_17_64, &out[17], &out[15]); butterfly_two_coeff(a[29], a[18], cospi_23_64, cospi_9_64, &out[9], &out[23]); butterfly_two_coeff(a[28], a[19], cospi_7_64, cospi_25_64, &out[25], &out[7]); butterfly_two_coeff(a[27], a[20], cospi_27_64, cospi_5_64, &out[5], &out[27]); butterfly_two_coeff(a[26], a[21], cospi_11_64, cospi_21_64, &out[21], &out[11]); butterfly_two_coeff(a[25], a[22], cospi_19_64, cospi_13_64, &out[13], &out[19]); butterfly_two_coeff(a[24], a[23], cospi_3_64, cospi_29_64, &out[29], &out[3]); } #undef PASS_THROUGH #undef ADD_S16_S32 #undef SUB_S16_S32 #undef ADDW_S16_S32 #undef SUBW_S16_S32 #undef ADD_S32 #undef SUB_S32 #undef BUTTERFLY_ONE_S16_S32 #undef BUTTERFLY_ONE_S32 #undef BUTTERFLY_TWO_S32 // Transpose 8x8 to a new location. Don't use transpose_neon.h because those // are all in-place. // TODO(johannkoenig): share with other fdcts. static INLINE void transpose_8x8(const int16x8_t *a, int16x8_t *b) { // Swap 16 bit elements. const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]); const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]); const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]); const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]); // Swap 32 bit elements. const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]), vreinterpretq_s32_s16(c1.val[0])); const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]), vreinterpretq_s32_s16(c1.val[1])); const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]), vreinterpretq_s32_s16(c3.val[0])); const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]), vreinterpretq_s32_s16(c3.val[1])); // Swap 64 bit elements const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]); const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]); const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]); const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]); b[0] = e0.val[0]; b[1] = e1.val[0]; b[2] = e2.val[0]; b[3] = e3.val[0]; b[4] = e0.val[1]; b[5] = e1.val[1]; b[6] = e2.val[1]; b[7] = e3.val[1]; } void vpx_fdct32x32_neon(const int16_t *input, tran_low_t *output, int stride) { int16x8_t temp0[32]; int16x8_t temp1[32]; int16x8_t temp2[32]; int16x8_t temp3[32]; int16x8_t temp4[32]; int16x8_t temp5[32]; // Process in 8x32 columns. load(input, stride, temp0); dct_body_first_pass(temp0, temp1); load(input + 8, stride, temp0); dct_body_first_pass(temp0, temp2); load(input + 16, stride, temp0); dct_body_first_pass(temp0, temp3); load(input + 24, stride, temp0); dct_body_first_pass(temp0, temp4); // Generate the top row by munging the first set of 8 from each one together. transpose_8x8(&temp1[0], &temp0[0]); transpose_8x8(&temp2[0], &temp0[8]); transpose_8x8(&temp3[0], &temp0[16]); transpose_8x8(&temp4[0], &temp0[24]); dct_body_second_pass(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output, temp5); // Second row of 8x32. transpose_8x8(&temp1[8], &temp0[0]); transpose_8x8(&temp2[8], &temp0[8]); transpose_8x8(&temp3[8], &temp0[16]); transpose_8x8(&temp4[8], &temp0[24]); dct_body_second_pass(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 8 * 32, temp5); // Third row of 8x32 transpose_8x8(&temp1[16], &temp0[0]); transpose_8x8(&temp2[16], &temp0[8]); transpose_8x8(&temp3[16], &temp0[16]); transpose_8x8(&temp4[16], &temp0[24]); dct_body_second_pass(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 16 * 32, temp5); // Final row of 8x32. transpose_8x8(&temp1[24], &temp0[0]); transpose_8x8(&temp2[24], &temp0[8]); transpose_8x8(&temp3[24], &temp0[16]); transpose_8x8(&temp4[24], &temp0[24]); dct_body_second_pass(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 24 * 32, temp5); } void vpx_fdct32x32_rd_neon(const int16_t *input, tran_low_t *output, int stride) { int16x8_t temp0[32]; int16x8_t temp1[32]; int16x8_t temp2[32]; int16x8_t temp3[32]; int16x8_t temp4[32]; int16x8_t temp5[32]; // Process in 8x32 columns. load(input, stride, temp0); dct_body_first_pass(temp0, temp1); load(input + 8, stride, temp0); dct_body_first_pass(temp0, temp2); load(input + 16, stride, temp0); dct_body_first_pass(temp0, temp3); load(input + 24, stride, temp0); dct_body_first_pass(temp0, temp4); // Generate the top row by munging the first set of 8 from each one together. transpose_8x8(&temp1[0], &temp0[0]); transpose_8x8(&temp2[0], &temp0[8]); transpose_8x8(&temp3[0], &temp0[16]); transpose_8x8(&temp4[0], &temp0[24]); dct_body_second_pass_rd(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output, temp5); // Second row of 8x32. transpose_8x8(&temp1[8], &temp0[0]); transpose_8x8(&temp2[8], &temp0[8]); transpose_8x8(&temp3[8], &temp0[16]); transpose_8x8(&temp4[8], &temp0[24]); dct_body_second_pass_rd(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 8 * 32, temp5); // Third row of 8x32 transpose_8x8(&temp1[16], &temp0[0]); transpose_8x8(&temp2[16], &temp0[8]); transpose_8x8(&temp3[16], &temp0[16]); transpose_8x8(&temp4[16], &temp0[24]); dct_body_second_pass_rd(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 16 * 32, temp5); // Final row of 8x32. transpose_8x8(&temp1[24], &temp0[0]); transpose_8x8(&temp2[24], &temp0[8]); transpose_8x8(&temp3[24], &temp0[16]); transpose_8x8(&temp4[24], &temp0[24]); dct_body_second_pass_rd(temp0, temp5); transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], &temp5[5], &temp5[6], &temp5[7]); transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], &temp5[13], &temp5[14], &temp5[15]); transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], &temp5[21], &temp5[22], &temp5[23]); transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], &temp5[29], &temp5[30], &temp5[31]); store(output + 24 * 32, temp5); } #endif // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && // __GNUC__ == 4 && __GNUC_MINOR__ <= 9