ref: a0944ba19fb4969fc6b3a55c7189a482a9cd3e4f
dir: /vpx_dsp/arm/mem_neon.h/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_VPX_DSP_ARM_MEM_NEON_H_ #define VPX_VPX_DSP_ARM_MEM_NEON_H_ #include <arm_neon.h> #include <assert.h> #include <string.h> #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/vpx_dsp_common.h" static INLINE int16x4_t create_s16x4_neon(const int16_t c0, const int16_t c1, const int16_t c2, const int16_t c3) { return vcreate_s16((uint16_t)c0 | ((uint32_t)c1 << 16) | ((int64_t)(uint16_t)c2 << 32) | ((int64_t)c3 << 48)); } static INLINE int32x2_t create_s32x2_neon(const int32_t c0, const int32_t c1) { return vcreate_s32((uint32_t)c0 | ((int64_t)(uint32_t)c1 << 32)); } static INLINE int32x4_t create_s32x4_neon(const int32_t c0, const int32_t c1, const int32_t c2, const int32_t c3) { return vcombine_s32(create_s32x2_neon(c0, c1), create_s32x2_neon(c2, c3)); } // Helper functions used to load tran_low_t into int16, narrowing if necessary. static INLINE int16x8x2_t load_tran_low_to_s16x2q(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4x2_t v0 = vld2q_s32(buf); const int32x4x2_t v1 = vld2q_s32(buf + 8); const int16x4_t s0 = vmovn_s32(v0.val[0]); const int16x4_t s1 = vmovn_s32(v0.val[1]); const int16x4_t s2 = vmovn_s32(v1.val[0]); const int16x4_t s3 = vmovn_s32(v1.val[1]); int16x8x2_t res; res.val[0] = vcombine_s16(s0, s2); res.val[1] = vcombine_s16(s1, s3); return res; #else return vld2q_s16(buf); #endif } static INLINE int16x8_t load_tran_low_to_s16q(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t v0 = vld1q_s32(buf); const int32x4_t v1 = vld1q_s32(buf + 4); const int16x4_t s0 = vmovn_s32(v0); const int16x4_t s1 = vmovn_s32(v1); return vcombine_s16(s0, s1); #else return vld1q_s16(buf); #endif } static INLINE int16x4_t load_tran_low_to_s16d(const tran_low_t *buf) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t v0 = vld1q_s32(buf); return vmovn_s32(v0); #else return vld1_s16(buf); #endif } static INLINE void store_s16q_to_tran_low(tran_low_t *buf, const int16x8_t a) { #if CONFIG_VP9_HIGHBITDEPTH const int32x4_t v0 = vmovl_s16(vget_low_s16(a)); const int32x4_t v1 = vmovl_s16(vget_high_s16(a)); vst1q_s32(buf, v0); vst1q_s32(buf + 4, v1); #else vst1q_s16(buf, a); #endif } // Propagate type information to the compiler. Without this the compiler may // assume the required alignment of uint32_t (4 bytes) and add alignment hints // to the memory access. // // This is used for functions operating on uint8_t which wish to load or store 4 // values at a time but which may not be on 4 byte boundaries. static INLINE void uint32_to_mem(uint8_t *buf, uint32_t a) { memcpy(buf, &a, 4); } // Load 2 sets of 4 bytes when alignment is not guaranteed. static INLINE uint8x8_t load_unaligned_u8(const uint8_t *buf, int stride) { uint32_t a; uint32x2_t a_u32 = vdup_n_u32(0); if (stride == 4) return vld1_u8(buf); memcpy(&a, buf, 4); buf += stride; a_u32 = vset_lane_u32(a, a_u32, 0); memcpy(&a, buf, 4); a_u32 = vset_lane_u32(a, a_u32, 1); return vreinterpret_u8_u32(a_u32); } // Store 2 sets of 4 bytes when alignment is not guaranteed. static INLINE void store_unaligned_u8(uint8_t *buf, int stride, const uint8x8_t a) { const uint32x2_t a_u32 = vreinterpret_u32_u8(a); if (stride == 4) { vst1_u8(buf, a); return; } uint32_to_mem(buf, vget_lane_u32(a_u32, 0)); buf += stride; uint32_to_mem(buf, vget_lane_u32(a_u32, 1)); } // Load 4 sets of 4 bytes when alignment is not guaranteed. static INLINE uint8x16_t load_unaligned_u8q(const uint8_t *buf, int stride) { uint32_t a; uint32x4_t a_u32 = vdupq_n_u32(0); if (stride == 4) return vld1q_u8(buf); memcpy(&a, buf, 4); buf += stride; a_u32 = vsetq_lane_u32(a, a_u32, 0); memcpy(&a, buf, 4); buf += stride; a_u32 = vsetq_lane_u32(a, a_u32, 1); memcpy(&a, buf, 4); buf += stride; a_u32 = vsetq_lane_u32(a, a_u32, 2); memcpy(&a, buf, 4); buf += stride; a_u32 = vsetq_lane_u32(a, a_u32, 3); return vreinterpretq_u8_u32(a_u32); } // Store 4 sets of 4 bytes when alignment is not guaranteed. static INLINE void store_unaligned_u8q(uint8_t *buf, int stride, const uint8x16_t a) { const uint32x4_t a_u32 = vreinterpretq_u32_u8(a); if (stride == 4) { vst1q_u8(buf, a); return; } uint32_to_mem(buf, vgetq_lane_u32(a_u32, 0)); buf += stride; uint32_to_mem(buf, vgetq_lane_u32(a_u32, 1)); buf += stride; uint32_to_mem(buf, vgetq_lane_u32(a_u32, 2)); buf += stride; uint32_to_mem(buf, vgetq_lane_u32(a_u32, 3)); } // Load 2 sets of 4 bytes when alignment is guaranteed. static INLINE uint8x8_t load_u8(const uint8_t *buf, int stride) { uint32x2_t a = vdup_n_u32(0); assert(!((intptr_t)buf % sizeof(uint32_t))); assert(!(stride % sizeof(uint32_t))); a = vld1_lane_u32((const uint32_t *)buf, a, 0); buf += stride; a = vld1_lane_u32((const uint32_t *)buf, a, 1); return vreinterpret_u8_u32(a); } // Store 2 sets of 4 bytes when alignment is guaranteed. static INLINE void store_u8(uint8_t *buf, int stride, const uint8x8_t a) { uint32x2_t a_u32 = vreinterpret_u32_u8(a); assert(!((intptr_t)buf % sizeof(uint32_t))); assert(!(stride % sizeof(uint32_t))); vst1_lane_u32((uint32_t *)buf, a_u32, 0); buf += stride; vst1_lane_u32((uint32_t *)buf, a_u32, 1); } #endif // VPX_VPX_DSP_ARM_MEM_NEON_H_