ref: a28d43658e3347d55d70655e6ee3d87d0d3fba8a
dir: /third_party/libyuv/source/row_common.cc/
/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/row.h" #include <stdio.h> #include <string.h> // For memcpy and memset. #include "libyuv/basic_types.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // llvm x86 is poor at ternary operator, so use branchless min/max. #define USE_BRANCHLESS 1 #if USE_BRANCHLESS static __inline int32_t clamp0(int32_t v) { return ((-(v) >> 31) & (v)); } static __inline int32_t clamp255(int32_t v) { return (((255 - (v)) >> 31) | (v)) & 255; } static __inline int32_t clamp1023(int32_t v) { return (((1023 - (v)) >> 31) | (v)) & 1023; } static __inline uint32_t Abs(int32_t v) { int m = v >> 31; return (v + m) ^ m; } #else // USE_BRANCHLESS static __inline int32_t clamp0(int32_t v) { return (v < 0) ? 0 : v; } static __inline int32_t clamp255(int32_t v) { return (v > 255) ? 255 : v; } static __inline int32_t clamp1023(int32_t v) { return (v > 1023) ? 1023 : v; } static __inline uint32_t Abs(int32_t v) { return (v < 0) ? -v : v; } #endif // USE_BRANCHLESS static __inline uint32_t Clamp(int32_t val) { int v = clamp0(val); return (uint32_t)(clamp255(v)); } static __inline uint32_t Clamp10(int32_t val) { int v = clamp0(val); return (uint32_t)(clamp1023(v)); } // Little Endian #if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \ defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \ (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define WRITEWORD(p, v) *(uint32_t*)(p) = v #else static inline void WRITEWORD(uint8_t* p, uint32_t v) { p[0] = (uint8_t)(v & 255); p[1] = (uint8_t)((v >> 8) & 255); p[2] = (uint8_t)((v >> 16) & 255); p[3] = (uint8_t)((v >> 24) & 255); } #endif void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_rgb24[0]; uint8_t g = src_rgb24[1]; uint8_t r = src_rgb24[2]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = 255u; dst_argb += 4; src_rgb24 += 3; } } void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t r = src_raw[0]; uint8_t g = src_raw[1]; uint8_t b = src_raw[2]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = 255u; dst_argb += 4; src_raw += 3; } } void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) { int x; for (x = 0; x < width; ++x) { uint8_t r = src_raw[0]; uint8_t g = src_raw[1]; uint8_t b = src_raw[2]; dst_rgb24[0] = b; dst_rgb24[1] = g; dst_rgb24[2] = r; dst_rgb24 += 3; src_raw += 3; } } void RGB565ToARGBRow_C(const uint8_t* src_rgb565, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_rgb565[0] & 0x1f; uint8_t g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); uint8_t r = src_rgb565[1] >> 3; dst_argb[0] = (b << 3) | (b >> 2); dst_argb[1] = (g << 2) | (g >> 4); dst_argb[2] = (r << 3) | (r >> 2); dst_argb[3] = 255u; dst_argb += 4; src_rgb565 += 2; } } void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb1555[0] & 0x1f; uint8_t g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); uint8_t r = (src_argb1555[1] & 0x7c) >> 2; uint8_t a = src_argb1555[1] >> 7; dst_argb[0] = (b << 3) | (b >> 2); dst_argb[1] = (g << 3) | (g >> 2); dst_argb[2] = (r << 3) | (r >> 2); dst_argb[3] = -a; dst_argb += 4; src_argb1555 += 2; } } void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb4444[0] & 0x0f; uint8_t g = src_argb4444[0] >> 4; uint8_t r = src_argb4444[1] & 0x0f; uint8_t a = src_argb4444[1] >> 4; dst_argb[0] = (b << 4) | b; dst_argb[1] = (g << 4) | g; dst_argb[2] = (r << 4) | r; dst_argb[3] = (a << 4) | a; dst_argb += 4; src_argb4444 += 2; } } void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint32_t ar30 = *(const uint32_t*)src_ar30; uint32_t b = (ar30 >> 2) & 0xff; uint32_t g = (ar30 >> 12) & 0xff; uint32_t r = (ar30 >> 22) & 0xff; uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. *(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24); dst_argb += 4; src_ar30 += 4; } } void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) { int x; for (x = 0; x < width; ++x) { uint32_t ar30 = *(const uint32_t*)src_ar30; uint32_t b = (ar30 >> 2) & 0xff; uint32_t g = (ar30 >> 12) & 0xff; uint32_t r = (ar30 >> 22) & 0xff; uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits. *(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24); dst_abgr += 4; src_ar30 += 4; } } void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) { int x; for (x = 0; x < width; ++x) { uint32_t ar30 = *(const uint32_t*)src_ar30; uint32_t b = ar30 & 0x3ff; uint32_t ga = ar30 & 0xc00ffc00; uint32_t r = (ar30 >> 20) & 0x3ff; *(uint32_t*)(dst_ab30) = r | ga | (b << 20); dst_ab30 += 4; src_ar30 += 4; } } void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb[0]; uint8_t g = src_argb[1]; uint8_t r = src_argb[2]; dst_rgb[0] = b; dst_rgb[1] = g; dst_rgb[2] = r; dst_rgb += 3; src_argb += 4; } } void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb[0]; uint8_t g = src_argb[1]; uint8_t r = src_argb[2]; dst_rgb[0] = r; dst_rgb[1] = g; dst_rgb[2] = b; dst_rgb += 3; src_argb += 4; } } void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_argb[0] >> 3; uint8_t g0 = src_argb[1] >> 2; uint8_t r0 = src_argb[2] >> 3; uint8_t b1 = src_argb[4] >> 3; uint8_t g1 = src_argb[5] >> 2; uint8_t r1 = src_argb[6] >> 3; WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27)); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8_t b0 = src_argb[0] >> 3; uint8_t g0 = src_argb[1] >> 2; uint8_t r0 = src_argb[2] >> 3; *(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); } } // dither4 is a row of 4 values from 4x4 dither matrix. // The 4x4 matrix contains values to increase RGB. When converting to // fewer bits (565) this provides an ordered dither. // The order in the 4x4 matrix in first byte is upper left. // The 4 values are passed as an int, then referenced as an array, so // endian will not affect order of the original matrix. But the dither4 // will containing the first pixel in the lower byte for little endian // or the upper byte for big endian. void ARGBToRGB565DitherRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, const uint32_t dither4, int width) { int x; for (x = 0; x < width - 1; x += 2) { int dither0 = ((const unsigned char*)(&dither4))[x & 3]; int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3]; uint8_t b0 = clamp255(src_argb[0] + dither0) >> 3; uint8_t g0 = clamp255(src_argb[1] + dither0) >> 2; uint8_t r0 = clamp255(src_argb[2] + dither0) >> 3; uint8_t b1 = clamp255(src_argb[4] + dither1) >> 3; uint8_t g1 = clamp255(src_argb[5] + dither1) >> 2; uint8_t r1 = clamp255(src_argb[6] + dither1) >> 3; WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27)); dst_rgb += 4; src_argb += 8; } if (width & 1) { int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3]; uint8_t b0 = clamp255(src_argb[0] + dither0) >> 3; uint8_t g0 = clamp255(src_argb[1] + dither0) >> 2; uint8_t r0 = clamp255(src_argb[2] + dither0) >> 3; *(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); } } void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_argb[0] >> 3; uint8_t g0 = src_argb[1] >> 3; uint8_t r0 = src_argb[2] >> 3; uint8_t a0 = src_argb[3] >> 7; uint8_t b1 = src_argb[4] >> 3; uint8_t g1 = src_argb[5] >> 3; uint8_t r1 = src_argb[6] >> 3; uint8_t a1 = src_argb[7] >> 7; *(uint32_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) | (b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8_t b0 = src_argb[0] >> 3; uint8_t g0 = src_argb[1] >> 3; uint8_t r0 = src_argb[2] >> 3; uint8_t a0 = src_argb[3] >> 7; *(uint16_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15); } } void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_argb[0] >> 4; uint8_t g0 = src_argb[1] >> 4; uint8_t r0 = src_argb[2] >> 4; uint8_t a0 = src_argb[3] >> 4; uint8_t b1 = src_argb[4] >> 4; uint8_t g1 = src_argb[5] >> 4; uint8_t r1 = src_argb[6] >> 4; uint8_t a1 = src_argb[7] >> 4; *(uint32_t*)(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) | (b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28); dst_rgb += 4; src_argb += 8; } if (width & 1) { uint8_t b0 = src_argb[0] >> 4; uint8_t g0 = src_argb[1] >> 4; uint8_t r0 = src_argb[2] >> 4; uint8_t a0 = src_argb[3] >> 4; *(uint16_t*)(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12); } } void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) { int x; for (x = 0; x < width; ++x) { uint32_t b0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2); uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2); uint32_t r0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2); uint32_t a0 = (src_abgr[3] >> 6); *(uint32_t*)(dst_ar30) = r0 | (g0 << 10) | (b0 << 20) | (a0 << 30); dst_ar30 += 4; src_abgr += 4; } } void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) { int x; for (x = 0; x < width; ++x) { uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2); uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2); uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2); uint32_t a0 = (src_argb[3] >> 6); *(uint32_t*)(dst_ar30) = b0 | (g0 << 10) | (r0 << 20) | (a0 << 30); dst_ar30 += 4; src_argb += 4; } } static __inline int RGBToY(uint8_t r, uint8_t g, uint8_t b) { return (66 * r + 129 * g + 25 * b + 0x1080) >> 8; } static __inline int RGBToU(uint8_t r, uint8_t g, uint8_t b) { return (112 * b - 74 * g - 38 * r + 0x8080) >> 8; } static __inline int RGBToV(uint8_t r, uint8_t g, uint8_t b) { return (112 * r - 94 * g - 18 * b + 0x8080) >> 8; } // ARGBToY_C and ARGBToUV_C #define MAKEROWY(NAME, R, G, B, BPP) \ void NAME##ToYRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \ int x; \ for (x = 0; x < width; ++x) { \ dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \ src_argb0 += BPP; \ dst_y += 1; \ } \ } \ void NAME##ToUVRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \ uint8_t* dst_u, uint8_t* dst_v, int width) { \ const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \ int x; \ for (x = 0; x < width - 1; x += 2) { \ uint8_t ab = (src_rgb0[B] + src_rgb0[B + BPP] + src_rgb1[B] + \ src_rgb1[B + BPP]) >> \ 2; \ uint8_t ag = (src_rgb0[G] + src_rgb0[G + BPP] + src_rgb1[G] + \ src_rgb1[G + BPP]) >> \ 2; \ uint8_t ar = (src_rgb0[R] + src_rgb0[R + BPP] + src_rgb1[R] + \ src_rgb1[R + BPP]) >> \ 2; \ dst_u[0] = RGBToU(ar, ag, ab); \ dst_v[0] = RGBToV(ar, ag, ab); \ src_rgb0 += BPP * 2; \ src_rgb1 += BPP * 2; \ dst_u += 1; \ dst_v += 1; \ } \ if (width & 1) { \ uint8_t ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \ uint8_t ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \ uint8_t ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \ dst_u[0] = RGBToU(ar, ag, ab); \ dst_v[0] = RGBToV(ar, ag, ab); \ } \ } MAKEROWY(ARGB, 2, 1, 0, 4) MAKEROWY(BGRA, 1, 2, 3, 4) MAKEROWY(ABGR, 0, 1, 2, 4) MAKEROWY(RGBA, 3, 2, 1, 4) MAKEROWY(RGB24, 2, 1, 0, 3) MAKEROWY(RAW, 0, 1, 2, 3) #undef MAKEROWY // JPeg uses a variation on BT.601-1 full range // y = 0.29900 * r + 0.58700 * g + 0.11400 * b // u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center // v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center // BT.601 Mpeg range uses: // b 0.1016 * 255 = 25.908 = 25 // g 0.5078 * 255 = 129.489 = 129 // r 0.2578 * 255 = 65.739 = 66 // JPeg 8 bit Y (not used): // b 0.11400 * 256 = 29.184 = 29 // g 0.58700 * 256 = 150.272 = 150 // r 0.29900 * 256 = 76.544 = 77 // JPeg 7 bit Y: // b 0.11400 * 128 = 14.592 = 15 // g 0.58700 * 128 = 75.136 = 75 // r 0.29900 * 128 = 38.272 = 38 // JPeg 8 bit U: // b 0.50000 * 255 = 127.5 = 127 // g -0.33126 * 255 = -84.4713 = -84 // r -0.16874 * 255 = -43.0287 = -43 // JPeg 8 bit V: // b -0.08131 * 255 = -20.73405 = -20 // g -0.41869 * 255 = -106.76595 = -107 // r 0.50000 * 255 = 127.5 = 127 static __inline int RGBToYJ(uint8_t r, uint8_t g, uint8_t b) { return (38 * r + 75 * g + 15 * b + 64) >> 7; } static __inline int RGBToUJ(uint8_t r, uint8_t g, uint8_t b) { return (127 * b - 84 * g - 43 * r + 0x8080) >> 8; } static __inline int RGBToVJ(uint8_t r, uint8_t g, uint8_t b) { return (127 * r - 107 * g - 20 * b + 0x8080) >> 8; } #define AVGB(a, b) (((a) + (b) + 1) >> 1) // ARGBToYJ_C and ARGBToUVJ_C #define MAKEROWYJ(NAME, R, G, B, BPP) \ void NAME##ToYJRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \ int x; \ for (x = 0; x < width; ++x) { \ dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]); \ src_argb0 += BPP; \ dst_y += 1; \ } \ } \ void NAME##ToUVJRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \ uint8_t* dst_u, uint8_t* dst_v, int width) { \ const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \ int x; \ for (x = 0; x < width - 1; x += 2) { \ uint8_t ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]), \ AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP])); \ uint8_t ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]), \ AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP])); \ uint8_t ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]), \ AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP])); \ dst_u[0] = RGBToUJ(ar, ag, ab); \ dst_v[0] = RGBToVJ(ar, ag, ab); \ src_rgb0 += BPP * 2; \ src_rgb1 += BPP * 2; \ dst_u += 1; \ dst_v += 1; \ } \ if (width & 1) { \ uint8_t ab = AVGB(src_rgb0[B], src_rgb1[B]); \ uint8_t ag = AVGB(src_rgb0[G], src_rgb1[G]); \ uint8_t ar = AVGB(src_rgb0[R], src_rgb1[R]); \ dst_u[0] = RGBToUJ(ar, ag, ab); \ dst_v[0] = RGBToVJ(ar, ag, ab); \ } \ } MAKEROWYJ(ARGB, 2, 1, 0, 4) #undef MAKEROWYJ void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_rgb565[0] & 0x1f; uint8_t g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); uint8_t r = src_rgb565[1] >> 3; b = (b << 3) | (b >> 2); g = (g << 2) | (g >> 4); r = (r << 3) | (r >> 2); dst_y[0] = RGBToY(r, g, b); src_rgb565 += 2; dst_y += 1; } } void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb1555[0] & 0x1f; uint8_t g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); uint8_t r = (src_argb1555[1] & 0x7c) >> 2; b = (b << 3) | (b >> 2); g = (g << 3) | (g >> 2); r = (r << 3) | (r >> 2); dst_y[0] = RGBToY(r, g, b); src_argb1555 += 2; dst_y += 1; } } void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) { int x; for (x = 0; x < width; ++x) { uint8_t b = src_argb4444[0] & 0x0f; uint8_t g = src_argb4444[0] >> 4; uint8_t r = src_argb4444[1] & 0x0f; b = (b << 4) | b; g = (g << 4) | g; r = (r << 4) | r; dst_y[0] = RGBToY(r, g, b); src_argb4444 += 2; dst_y += 1; } } void RGB565ToUVRow_C(const uint8_t* src_rgb565, int src_stride_rgb565, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565; int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_rgb565[0] & 0x1f; uint8_t g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); uint8_t r0 = src_rgb565[1] >> 3; uint8_t b1 = src_rgb565[2] & 0x1f; uint8_t g1 = (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3); uint8_t r1 = src_rgb565[3] >> 3; uint8_t b2 = next_rgb565[0] & 0x1f; uint8_t g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); uint8_t r2 = next_rgb565[1] >> 3; uint8_t b3 = next_rgb565[2] & 0x1f; uint8_t g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3); uint8_t r3 = next_rgb565[3] >> 3; uint8_t b = (b0 + b1 + b2 + b3); // 565 * 4 = 787. uint8_t g = (g0 + g1 + g2 + g3); uint8_t r = (r0 + r1 + r2 + r3); b = (b << 1) | (b >> 6); // 787 -> 888. r = (r << 1) | (r >> 6); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); src_rgb565 += 4; next_rgb565 += 4; dst_u += 1; dst_v += 1; } if (width & 1) { uint8_t b0 = src_rgb565[0] & 0x1f; uint8_t g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); uint8_t r0 = src_rgb565[1] >> 3; uint8_t b2 = next_rgb565[0] & 0x1f; uint8_t g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); uint8_t r2 = next_rgb565[1] >> 3; uint8_t b = (b0 + b2); // 565 * 2 = 676. uint8_t g = (g0 + g2); uint8_t r = (r0 + r2); b = (b << 2) | (b >> 4); // 676 -> 888 g = (g << 1) | (g >> 6); r = (r << 2) | (r >> 4); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); } } void ARGB1555ToUVRow_C(const uint8_t* src_argb1555, int src_stride_argb1555, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555; int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_argb1555[0] & 0x1f; uint8_t g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); uint8_t r0 = (src_argb1555[1] & 0x7c) >> 2; uint8_t b1 = src_argb1555[2] & 0x1f; uint8_t g1 = (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3); uint8_t r1 = (src_argb1555[3] & 0x7c) >> 2; uint8_t b2 = next_argb1555[0] & 0x1f; uint8_t g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); uint8_t r2 = (next_argb1555[1] & 0x7c) >> 2; uint8_t b3 = next_argb1555[2] & 0x1f; uint8_t g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3); uint8_t r3 = (next_argb1555[3] & 0x7c) >> 2; uint8_t b = (b0 + b1 + b2 + b3); // 555 * 4 = 777. uint8_t g = (g0 + g1 + g2 + g3); uint8_t r = (r0 + r1 + r2 + r3); b = (b << 1) | (b >> 6); // 777 -> 888. g = (g << 1) | (g >> 6); r = (r << 1) | (r >> 6); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); src_argb1555 += 4; next_argb1555 += 4; dst_u += 1; dst_v += 1; } if (width & 1) { uint8_t b0 = src_argb1555[0] & 0x1f; uint8_t g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); uint8_t r0 = (src_argb1555[1] & 0x7c) >> 2; uint8_t b2 = next_argb1555[0] & 0x1f; uint8_t g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); uint8_t r2 = next_argb1555[1] >> 3; uint8_t b = (b0 + b2); // 555 * 2 = 666. uint8_t g = (g0 + g2); uint8_t r = (r0 + r2); b = (b << 2) | (b >> 4); // 666 -> 888. g = (g << 2) | (g >> 4); r = (r << 2) | (r >> 4); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); } } void ARGB4444ToUVRow_C(const uint8_t* src_argb4444, int src_stride_argb4444, uint8_t* dst_u, uint8_t* dst_v, int width) { const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444; int x; for (x = 0; x < width - 1; x += 2) { uint8_t b0 = src_argb4444[0] & 0x0f; uint8_t g0 = src_argb4444[0] >> 4; uint8_t r0 = src_argb4444[1] & 0x0f; uint8_t b1 = src_argb4444[2] & 0x0f; uint8_t g1 = src_argb4444[2] >> 4; uint8_t r1 = src_argb4444[3] & 0x0f; uint8_t b2 = next_argb4444[0] & 0x0f; uint8_t g2 = next_argb4444[0] >> 4; uint8_t r2 = next_argb4444[1] & 0x0f; uint8_t b3 = next_argb4444[2] & 0x0f; uint8_t g3 = next_argb4444[2] >> 4; uint8_t r3 = next_argb4444[3] & 0x0f; uint8_t b = (b0 + b1 + b2 + b3); // 444 * 4 = 666. uint8_t g = (g0 + g1 + g2 + g3); uint8_t r = (r0 + r1 + r2 + r3); b = (b << 2) | (b >> 4); // 666 -> 888. g = (g << 2) | (g >> 4); r = (r << 2) | (r >> 4); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); src_argb4444 += 4; next_argb4444 += 4; dst_u += 1; dst_v += 1; } if (width & 1) { uint8_t b0 = src_argb4444[0] & 0x0f; uint8_t g0 = src_argb4444[0] >> 4; uint8_t r0 = src_argb4444[1] & 0x0f; uint8_t b2 = next_argb4444[0] & 0x0f; uint8_t g2 = next_argb4444[0] >> 4; uint8_t r2 = next_argb4444[1] & 0x0f; uint8_t b = (b0 + b2); // 444 * 2 = 555. uint8_t g = (g0 + g2); uint8_t r = (r0 + r2); b = (b << 3) | (b >> 2); // 555 -> 888. g = (g << 3) | (g >> 2); r = (r << 3) | (r >> 2); dst_u[0] = RGBToU(r, g, b); dst_v[0] = RGBToV(r, g, b); } } void ARGBToUV444Row_C(const uint8_t* src_argb, uint8_t* dst_u, uint8_t* dst_v, int width) { int x; for (x = 0; x < width; ++x) { uint8_t ab = src_argb[0]; uint8_t ag = src_argb[1]; uint8_t ar = src_argb[2]; dst_u[0] = RGBToU(ar, ag, ab); dst_v[0] = RGBToV(ar, ag, ab); src_argb += 4; dst_u += 1; dst_v += 1; } } void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]); dst_argb[2] = dst_argb[1] = dst_argb[0] = y; dst_argb[3] = src_argb[3]; dst_argb += 4; src_argb += 4; } } // Convert a row of image to Sepia tone. void ARGBSepiaRow_C(uint8_t* dst_argb, int width) { int x; for (x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; int sb = (b * 17 + g * 68 + r * 35) >> 7; int sg = (b * 22 + g * 88 + r * 45) >> 7; int sr = (b * 24 + g * 98 + r * 50) >> 7; // b does not over flow. a is preserved from original. dst_argb[0] = sb; dst_argb[1] = clamp255(sg); dst_argb[2] = clamp255(sr); dst_argb += 4; } } // Apply color matrix to a row of image. Matrix is signed. // TODO(fbarchard): Consider adding rounding (+32). void ARGBColorMatrixRow_C(const uint8_t* src_argb, uint8_t* dst_argb, const int8_t* matrix_argb, int width) { int x; for (x = 0; x < width; ++x) { int b = src_argb[0]; int g = src_argb[1]; int r = src_argb[2]; int a = src_argb[3]; int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] + a * matrix_argb[3]) >> 6; int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] + a * matrix_argb[7]) >> 6; int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] + a * matrix_argb[11]) >> 6; int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] + a * matrix_argb[15]) >> 6; dst_argb[0] = Clamp(sb); dst_argb[1] = Clamp(sg); dst_argb[2] = Clamp(sr); dst_argb[3] = Clamp(sa); src_argb += 4; dst_argb += 4; } } // Apply color table to a row of image. void ARGBColorTableRow_C(uint8_t* dst_argb, const uint8_t* table_argb, int width) { int x; for (x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; int a = dst_argb[3]; dst_argb[0] = table_argb[b * 4 + 0]; dst_argb[1] = table_argb[g * 4 + 1]; dst_argb[2] = table_argb[r * 4 + 2]; dst_argb[3] = table_argb[a * 4 + 3]; dst_argb += 4; } } // Apply color table to a row of image. void RGBColorTableRow_C(uint8_t* dst_argb, const uint8_t* table_argb, int width) { int x; for (x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; dst_argb[0] = table_argb[b * 4 + 0]; dst_argb[1] = table_argb[g * 4 + 1]; dst_argb[2] = table_argb[r * 4 + 2]; dst_argb += 4; } } void ARGBQuantizeRow_C(uint8_t* dst_argb, int scale, int interval_size, int interval_offset, int width) { int x; for (x = 0; x < width; ++x) { int b = dst_argb[0]; int g = dst_argb[1]; int r = dst_argb[2]; dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset; dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset; dst_argb += 4; } } #define REPEAT8(v) (v) | ((v) << 8) #define SHADE(f, v) v* f >> 24 void ARGBShadeRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width, uint32_t value) { const uint32_t b_scale = REPEAT8(value & 0xff); const uint32_t g_scale = REPEAT8((value >> 8) & 0xff); const uint32_t r_scale = REPEAT8((value >> 16) & 0xff); const uint32_t a_scale = REPEAT8(value >> 24); int i; for (i = 0; i < width; ++i) { const uint32_t b = REPEAT8(src_argb[0]); const uint32_t g = REPEAT8(src_argb[1]); const uint32_t r = REPEAT8(src_argb[2]); const uint32_t a = REPEAT8(src_argb[3]); dst_argb[0] = SHADE(b, b_scale); dst_argb[1] = SHADE(g, g_scale); dst_argb[2] = SHADE(r, r_scale); dst_argb[3] = SHADE(a, a_scale); src_argb += 4; dst_argb += 4; } } #undef REPEAT8 #undef SHADE #define REPEAT8(v) (v) | ((v) << 8) #define SHADE(f, v) v* f >> 16 void ARGBMultiplyRow_C(const uint8_t* src_argb0, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { const uint32_t b = REPEAT8(src_argb0[0]); const uint32_t g = REPEAT8(src_argb0[1]); const uint32_t r = REPEAT8(src_argb0[2]); const uint32_t a = REPEAT8(src_argb0[3]); const uint32_t b_scale = src_argb1[0]; const uint32_t g_scale = src_argb1[1]; const uint32_t r_scale = src_argb1[2]; const uint32_t a_scale = src_argb1[3]; dst_argb[0] = SHADE(b, b_scale); dst_argb[1] = SHADE(g, g_scale); dst_argb[2] = SHADE(r, r_scale); dst_argb[3] = SHADE(a, a_scale); src_argb0 += 4; src_argb1 += 4; dst_argb += 4; } } #undef REPEAT8 #undef SHADE #define SHADE(f, v) clamp255(v + f) void ARGBAddRow_C(const uint8_t* src_argb0, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { const int b = src_argb0[0]; const int g = src_argb0[1]; const int r = src_argb0[2]; const int a = src_argb0[3]; const int b_add = src_argb1[0]; const int g_add = src_argb1[1]; const int r_add = src_argb1[2]; const int a_add = src_argb1[3]; dst_argb[0] = SHADE(b, b_add); dst_argb[1] = SHADE(g, g_add); dst_argb[2] = SHADE(r, r_add); dst_argb[3] = SHADE(a, a_add); src_argb0 += 4; src_argb1 += 4; dst_argb += 4; } } #undef SHADE #define SHADE(f, v) clamp0(f - v) void ARGBSubtractRow_C(const uint8_t* src_argb0, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { const int b = src_argb0[0]; const int g = src_argb0[1]; const int r = src_argb0[2]; const int a = src_argb0[3]; const int b_sub = src_argb1[0]; const int g_sub = src_argb1[1]; const int r_sub = src_argb1[2]; const int a_sub = src_argb1[3]; dst_argb[0] = SHADE(b, b_sub); dst_argb[1] = SHADE(g, g_sub); dst_argb[2] = SHADE(r, r_sub); dst_argb[3] = SHADE(a, a_sub); src_argb0 += 4; src_argb1 += 4; dst_argb += 4; } } #undef SHADE // Sobel functions which mimics SSSE3. void SobelXRow_C(const uint8_t* src_y0, const uint8_t* src_y1, const uint8_t* src_y2, uint8_t* dst_sobelx, int width) { int i; for (i = 0; i < width; ++i) { int a = src_y0[i]; int b = src_y1[i]; int c = src_y2[i]; int a_sub = src_y0[i + 2]; int b_sub = src_y1[i + 2]; int c_sub = src_y2[i + 2]; int a_diff = a - a_sub; int b_diff = b - b_sub; int c_diff = c - c_sub; int sobel = Abs(a_diff + b_diff * 2 + c_diff); dst_sobelx[i] = (uint8_t)(clamp255(sobel)); } } void SobelYRow_C(const uint8_t* src_y0, const uint8_t* src_y1, uint8_t* dst_sobely, int width) { int i; for (i = 0; i < width; ++i) { int a = src_y0[i + 0]; int b = src_y0[i + 1]; int c = src_y0[i + 2]; int a_sub = src_y1[i + 0]; int b_sub = src_y1[i + 1]; int c_sub = src_y1[i + 2]; int a_diff = a - a_sub; int b_diff = b - b_sub; int c_diff = c - c_sub; int sobel = Abs(a_diff + b_diff * 2 + c_diff); dst_sobely[i] = (uint8_t)(clamp255(sobel)); } } void SobelRow_C(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { int r = src_sobelx[i]; int b = src_sobely[i]; int s = clamp255(r + b); dst_argb[0] = (uint8_t)(s); dst_argb[1] = (uint8_t)(s); dst_argb[2] = (uint8_t)(s); dst_argb[3] = (uint8_t)(255u); dst_argb += 4; } } void SobelToPlaneRow_C(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_y, int width) { int i; for (i = 0; i < width; ++i) { int r = src_sobelx[i]; int b = src_sobely[i]; int s = clamp255(r + b); dst_y[i] = (uint8_t)(s); } } void SobelXYRow_C(const uint8_t* src_sobelx, const uint8_t* src_sobely, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { int r = src_sobelx[i]; int b = src_sobely[i]; int g = clamp255(r + b); dst_argb[0] = (uint8_t)(b); dst_argb[1] = (uint8_t)(g); dst_argb[2] = (uint8_t)(r); dst_argb[3] = (uint8_t)(255u); dst_argb += 4; } } void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) { // Copy a Y to RGB. int x; for (x = 0; x < width; ++x) { uint8_t y = src_y[0]; dst_argb[2] = dst_argb[1] = dst_argb[0] = y; dst_argb[3] = 255u; dst_argb += 4; ++src_y; } } // TODO(fbarchard): Unify these structures to be platform independent. // TODO(fbarchard): Generate SIMD structures from float matrix. // BT.601 YUV to RGB reference // R = (Y - 16) * 1.164 - V * -1.596 // G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813 // B = (Y - 16) * 1.164 - U * -2.018 // Y contribution to R,G,B. Scale and bias. #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ #define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ // U and V contributions to R,G,B. #define UB -128 /* max(-128, round(-2.018 * 64)) */ #define UG 25 /* round(0.391 * 64) */ #define VG 52 /* round(0.813 * 64) */ #define VR -102 /* round(-1.596 * 64) */ // Bias values to subtract 16 from Y and 128 from U and V. #define BB (UB * 128 + YGB) #define BG (UG * 128 + VG * 128 + YGB) #define BR (VR * 128 + YGB) #if defined(__aarch64__) // 64 bit arm const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {UG, VG, UG, VG, UG, VG, UG, VG}, {UG, VG, UG, VG, UG, VG, UG, VG}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {VG, UG, VG, UG, VG, UG, VG, UG}, {VG, UG, VG, UG, VG, UG, VG, UG}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #elif defined(__arm__) // 32 bit arm const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0}, {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0}, {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #else const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0}, {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG}, {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; #endif #undef BB #undef BG #undef BR #undef YGB #undef UB #undef UG #undef VG #undef VR #undef YG // JPEG YUV to RGB reference // * R = Y - V * -1.40200 // * G = Y - U * 0.34414 - V * 0.71414 // * B = Y - U * -1.77200 // Y contribution to R,G,B. Scale and bias. #define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ #define YGB 32 /* 64 / 2 */ // U and V contributions to R,G,B. #define UB -113 /* round(-1.77200 * 64) */ #define UG 22 /* round(0.34414 * 64) */ #define VG 46 /* round(0.71414 * 64) */ #define VR -90 /* round(-1.40200 * 64) */ // Bias values to round, and subtract 128 from U and V. #define BB (UB * 128 + YGB) #define BG (UG * 128 + VG * 128 + YGB) #define BR (VR * 128 + YGB) #if defined(__aarch64__) const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {UG, VG, UG, VG, UG, VG, UG, VG}, {UG, VG, UG, VG, UG, VG, UG, VG}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {VG, UG, VG, UG, VG, UG, VG, UG}, {VG, UG, VG, UG, VG, UG, VG, UG}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #elif defined(__arm__) const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0}, {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0}, {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #else const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0}, {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG}, {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; #endif #undef BB #undef BG #undef BR #undef YGB #undef UB #undef UG #undef VG #undef VR #undef YG // BT.709 YUV to RGB reference // R = (Y - 16) * 1.164 - V * -1.793 // G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533 // B = (Y - 16) * 1.164 - U * -2.112 // See also http://www.equasys.de/colorconversion.html // Y contribution to R,G,B. Scale and bias. #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ #define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ // TODO(fbarchard): Find way to express 2.112 instead of 2.0. // U and V contributions to R,G,B. #define UB -128 /* max(-128, round(-2.112 * 64)) */ #define UG 14 /* round(0.213 * 64) */ #define VG 34 /* round(0.533 * 64) */ #define VR -115 /* round(-1.793 * 64) */ // Bias values to round, and subtract 128 from U and V. #define BB (UB * 128 + YGB) #define BG (UG * 128 + VG * 128 + YGB) #define BR (VR * 128 + YGB) #if defined(__aarch64__) const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR}, {UG, VG, UG, VG, UG, VG, UG, VG}, {UG, VG, UG, VG, UG, VG, UG, VG}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB}, {VG, UG, VG, UG, VG, UG, VG, UG}, {VG, UG, VG, UG, VG, UG, VG, UG}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #elif defined(__arm__) const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0}, {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0}, {BB, BG, BR, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0}, {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0}, {BR, BG, BB, 0, 0, 0, 0, 0}, {0x0101 * YG, 0, 0, 0}}; #else const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0}, {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG}, {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB}, {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR}, {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG}, {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB}, {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}}; #endif #undef BB #undef BG #undef BR #undef YGB #undef UB #undef UG #undef VG #undef VR #undef YG // C reference code that mimics the YUV assembly. // Reads 8 bit YUV and leaves result as 16 bit. static __inline void YuvPixel(uint8_t y, uint8_t u, uint8_t v, uint8_t* b, uint8_t* g, uint8_t* r, const struct YuvConstants* yuvconstants) { #if defined(__aarch64__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = -yuvconstants->kUVToRB[1]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #elif defined(__arm__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[4]; int vr = -yuvconstants->kUVToRB[4]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #else int ub = yuvconstants->kUVToB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = yuvconstants->kUVToR[1]; int bb = yuvconstants->kUVBiasB[0]; int bg = yuvconstants->kUVBiasG[0]; int br = yuvconstants->kUVBiasR[0]; int yg = yuvconstants->kYToRgb[0]; #endif uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16; *b = Clamp((int32_t)(-(u * ub) + y1 + bb) >> 6); *g = Clamp((int32_t)(-(u * ug + v * vg) + y1 + bg) >> 6); *r = Clamp((int32_t)(-(v * vr) + y1 + br) >> 6); } // Reads 8 bit YUV and leaves result as 16 bit. static __inline void YuvPixel8_16(uint8_t y, uint8_t u, uint8_t v, int* b, int* g, int* r, const struct YuvConstants* yuvconstants) { #if defined(__aarch64__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = -yuvconstants->kUVToRB[1]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #elif defined(__arm__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[4]; int vr = -yuvconstants->kUVToRB[4]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #else int ub = yuvconstants->kUVToB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = yuvconstants->kUVToR[1]; int bb = yuvconstants->kUVBiasB[0]; int bg = yuvconstants->kUVBiasG[0]; int br = yuvconstants->kUVBiasR[0]; int yg = yuvconstants->kYToRgb[0]; #endif uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16; *b = (int)(-(u * ub) + y1 + bb); *g = (int)(-(u * ug + v * vg) + y1 + bg); *r = (int)(-(v * vr) + y1 + br); } // C reference code that mimics the YUV 16 bit assembly. // Reads 10 bit YUV and leaves result as 16 bit. static __inline void YuvPixel16(int16_t y, int16_t u, int16_t v, int* b, int* g, int* r, const struct YuvConstants* yuvconstants) { #if defined(__aarch64__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = -yuvconstants->kUVToRB[1]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #elif defined(__arm__) int ub = -yuvconstants->kUVToRB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[4]; int vr = -yuvconstants->kUVToRB[4]; int bb = yuvconstants->kUVBiasBGR[0]; int bg = yuvconstants->kUVBiasBGR[1]; int br = yuvconstants->kUVBiasBGR[2]; int yg = yuvconstants->kYToRgb[0] / 0x0101; #else int ub = yuvconstants->kUVToB[0]; int ug = yuvconstants->kUVToG[0]; int vg = yuvconstants->kUVToG[1]; int vr = yuvconstants->kUVToR[1]; int bb = yuvconstants->kUVBiasB[0]; int bg = yuvconstants->kUVBiasG[0]; int br = yuvconstants->kUVBiasR[0]; int yg = yuvconstants->kYToRgb[0]; #endif uint32_t y1 = (uint32_t)((y << 6) * yg) >> 16; u = clamp255(u >> 2); v = clamp255(v >> 2); *b = (int)(-(u * ub) + y1 + bb); *g = (int)(-(u * ug + v * vg) + y1 + bg); *r = (int)(-(v * vr) + y1 + br); } // C reference code that mimics the YUV 10 bit assembly. // Reads 10 bit YUV and clamps down to 8 bit RGB. static __inline void YuvPixel10(uint16_t y, uint16_t u, uint16_t v, uint8_t* b, uint8_t* g, uint8_t* r, const struct YuvConstants* yuvconstants) { int b16; int g16; int r16; YuvPixel16(y, u, v, &b16, &g16, &r16, yuvconstants); *b = Clamp(b16 >> 6); *g = Clamp(g16 >> 6); *r = Clamp(r16 >> 6); } // Y contribution to R,G,B. Scale and bias. #define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ #define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ // C reference code that mimics the YUV assembly. static __inline void YPixel(uint8_t y, uint8_t* b, uint8_t* g, uint8_t* r) { uint32_t y1 = (uint32_t)(y * 0x0101 * YG) >> 16; *b = Clamp((int32_t)(y1 + YGB) >> 6); *g = Clamp((int32_t)(y1 + YGB) >> 6); *r = Clamp((int32_t)(y1 + YGB) >> 6); } #undef YG #undef YGB #if !defined(LIBYUV_DISABLE_NEON) && \ (defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON)) // C mimic assembly. // TODO(fbarchard): Remove subsampling from Neon. void I444ToARGBRow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { uint8_t u = (src_u[0] + src_u[1] + 1) >> 1; uint8_t v = (src_v[0] + src_v[1] + 1) >> 1; YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_y += 2; src_u += 2; src_v += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } #else void I444ToARGBRow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width; ++x) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; src_y += 1; src_u += 1; src_v += 1; rgb_buf += 4; // Advance 1 pixel. } } #endif // Also used for 420 void I422ToARGBRow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_y += 2; src_u += 1; src_v += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } // 10 bit YUV to ARGB void I210ToARGBRow_C(const uint16_t* src_y, const uint16_t* src_u, const uint16_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_y += 2; src_u += 1; src_v += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) { uint32_t ar30; b = b >> 4; // convert 10.6 to 10 bit. g = g >> 4; r = r >> 4; b = Clamp10(b); g = Clamp10(g); r = Clamp10(r); ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000; (*(uint32_t*)rgb_buf) = ar30; } // 10 bit YUV to 10 bit AR30 void I210ToAR30Row_C(const uint16_t* src_y, const uint16_t* src_u, const uint16_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; int b; int g; int r; for (x = 0; x < width - 1; x += 2) { YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf, b, g, r); YuvPixel16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf + 4, b, g, r); src_y += 2; src_u += 1; src_v += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf, b, g, r); } } // 8 bit YUV to 10 bit AR30 // Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits. void I422ToAR30Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; int b; int g; int r; for (x = 0; x < width - 1; x += 2) { YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf, b, g, r); YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf + 4, b, g, r); src_y += 2; src_u += 1; src_v += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants); StoreAR30(rgb_buf, b, g, r); } } void I422AlphaToARGBRow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, const uint8_t* src_a, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = src_a[0]; YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = src_a[1]; src_y += 2; src_u += 1; src_v += 1; src_a += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = src_a[0]; } } void I422ToRGB24Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 3, rgb_buf + 4, rgb_buf + 5, yuvconstants); src_y += 2; src_u += 1; src_v += 1; rgb_buf += 6; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); } } void I422ToARGB4444Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb4444, const struct YuvConstants* yuvconstants, int width) { uint8_t b0; uint8_t g0; uint8_t r0; uint8_t b1; uint8_t g1; uint8_t r1; int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); b0 = b0 >> 4; g0 = g0 >> 4; r0 = r0 >> 4; b1 = b1 >> 4; g1 = g1 >> 4; r1 = r1 >> 4; *(uint32_t*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | (b1 << 16) | (g1 << 20) | (r1 << 24) | 0xf000f000; src_y += 2; src_u += 1; src_v += 1; dst_argb4444 += 4; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); b0 = b0 >> 4; g0 = g0 >> 4; r0 = r0 >> 4; *(uint16_t*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | 0xf000; } } void I422ToARGB1555Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb1555, const struct YuvConstants* yuvconstants, int width) { uint8_t b0; uint8_t g0; uint8_t r0; uint8_t b1; uint8_t g1; uint8_t r1; int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 3; r0 = r0 >> 3; b1 = b1 >> 3; g1 = g1 >> 3; r1 = r1 >> 3; *(uint32_t*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | (b1 << 16) | (g1 << 21) | (r1 << 26) | 0x80008000; src_y += 2; src_u += 1; src_v += 1; dst_argb1555 += 4; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 3; r0 = r0 >> 3; *(uint16_t*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | 0x8000; } } void I422ToRGB565Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { uint8_t b0; uint8_t g0; uint8_t r0; uint8_t b1; uint8_t g1; uint8_t r1; int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 2; r0 = r0 >> 3; b1 = b1 >> 3; g1 = g1 >> 2; r1 = r1 >> 3; *(uint32_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27); src_y += 2; src_u += 1; src_v += 1; dst_rgb565 += 4; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 2; r0 = r0 >> 3; *(uint16_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); } } void NV12ToARGBRow_C(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_y += 2; src_uv += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } void NV21ToARGBRow_C(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_y += 2; src_vu += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } void NV12ToRGB24Row_C(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 3, rgb_buf + 4, rgb_buf + 5, yuvconstants); src_y += 2; src_uv += 2; rgb_buf += 6; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); } } void NV21ToRGB24Row_C(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 3, rgb_buf + 4, rgb_buf + 5, yuvconstants); src_y += 2; src_vu += 2; rgb_buf += 6; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); } } void NV12ToRGB565Row_C(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { uint8_t b0; uint8_t g0; uint8_t r0; uint8_t b1; uint8_t g1; uint8_t r1; int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 2; r0 = r0 >> 3; b1 = b1 >> 3; g1 = g1 >> 2; r1 = r1 >> 3; *(uint32_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27); src_y += 2; src_uv += 2; dst_rgb565 += 4; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); b0 = b0 >> 3; g0 = g0 >> 2; r0 = r0 >> 3; *(uint16_t*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); } } void YUY2ToARGBRow_C(const uint8_t* src_yuy2, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_yuy2 += 4; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } void UYVYToARGBRow_C(const uint8_t* src_uyvy, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); rgb_buf[7] = 255; src_uyvy += 4; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); rgb_buf[3] = 255; } } void I422ToRGBARow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* rgb_buf, const struct YuvConstants* yuvconstants, int width) { int x; for (x = 0; x < width - 1; x += 2) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants); rgb_buf[0] = 255; YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 5, rgb_buf + 6, rgb_buf + 7, yuvconstants); rgb_buf[4] = 255; src_y += 2; src_u += 1; src_v += 1; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants); rgb_buf[0] = 255; } } void I400ToARGBRow_C(const uint8_t* src_y, uint8_t* rgb_buf, int width) { int x; for (x = 0; x < width - 1; x += 2) { YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); rgb_buf[3] = 255; YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); rgb_buf[7] = 255; src_y += 2; rgb_buf += 8; // Advance 2 pixels. } if (width & 1) { YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); rgb_buf[3] = 255; } } void MirrorRow_C(const uint8_t* src, uint8_t* dst, int width) { int x; src += width - 1; for (x = 0; x < width - 1; x += 2) { dst[x] = src[0]; dst[x + 1] = src[-1]; src -= 2; } if (width & 1) { dst[width - 1] = src[0]; } } void MirrorUVRow_C(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v, int width) { int x; src_uv += (width - 1) << 1; for (x = 0; x < width - 1; x += 2) { dst_u[x] = src_uv[0]; dst_u[x + 1] = src_uv[-2]; dst_v[x] = src_uv[1]; dst_v[x + 1] = src_uv[-2 + 1]; src_uv -= 4; } if (width & 1) { dst_u[width - 1] = src_uv[0]; dst_v[width - 1] = src_uv[1]; } } void ARGBMirrorRow_C(const uint8_t* src, uint8_t* dst, int width) { int x; const uint32_t* src32 = (const uint32_t*)(src); uint32_t* dst32 = (uint32_t*)(dst); src32 += width - 1; for (x = 0; x < width - 1; x += 2) { dst32[x] = src32[0]; dst32[x + 1] = src32[-1]; src32 -= 2; } if (width & 1) { dst32[width - 1] = src32[0]; } } void SplitUVRow_C(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst_u[x] = src_uv[0]; dst_u[x + 1] = src_uv[2]; dst_v[x] = src_uv[1]; dst_v[x + 1] = src_uv[3]; src_uv += 4; } if (width & 1) { dst_u[width - 1] = src_uv[0]; dst_v[width - 1] = src_uv[1]; } } void MergeUVRow_C(const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_uv, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst_uv[0] = src_u[x]; dst_uv[1] = src_v[x]; dst_uv[2] = src_u[x + 1]; dst_uv[3] = src_v[x + 1]; dst_uv += 4; } if (width & 1) { dst_uv[0] = src_u[width - 1]; dst_uv[1] = src_v[width - 1]; } } void SplitRGBRow_C(const uint8_t* src_rgb, uint8_t* dst_r, uint8_t* dst_g, uint8_t* dst_b, int width) { int x; for (x = 0; x < width; ++x) { dst_r[x] = src_rgb[0]; dst_g[x] = src_rgb[1]; dst_b[x] = src_rgb[2]; src_rgb += 3; } } void MergeRGBRow_C(const uint8_t* src_r, const uint8_t* src_g, const uint8_t* src_b, uint8_t* dst_rgb, int width) { int x; for (x = 0; x < width; ++x) { dst_rgb[0] = src_r[x]; dst_rgb[1] = src_g[x]; dst_rgb[2] = src_b[x]; dst_rgb += 3; } } // Use scale to convert lsb formats to msb, depending how many bits there are: // 128 = 9 bits // 64 = 10 bits // 16 = 12 bits // 1 = 16 bits void MergeUVRow_16_C(const uint16_t* src_u, const uint16_t* src_v, uint16_t* dst_uv, int scale, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst_uv[0] = src_u[x] * scale; dst_uv[1] = src_v[x] * scale; dst_uv[2] = src_u[x + 1] * scale; dst_uv[3] = src_v[x + 1] * scale; dst_uv += 4; } if (width & 1) { dst_uv[0] = src_u[width - 1] * scale; dst_uv[1] = src_v[width - 1] * scale; } } void MultiplyRow_16_C(const uint16_t* src_y, uint16_t* dst_y, int scale, int width) { int x; for (x = 0; x < width; ++x) { dst_y[x] = src_y[x] * scale; } } // Use scale to convert lsb formats to msb, depending how many bits there are: // 32768 = 9 bits // 16384 = 10 bits // 4096 = 12 bits // 256 = 16 bits void Convert16To8Row_C(const uint16_t* src_y, uint8_t* dst_y, int scale, int width) { int x; for (x = 0; x < width; ++x) { dst_y[x] = clamp255((src_y[x] * scale) >> 16); } } // Use scale to convert lsb formats to msb, depending how many bits there are: // 1024 = 10 bits void Convert8To16Row_C(const uint8_t* src_y, uint16_t* dst_y, int scale, int width) { int x; scale *= 0x0101; // replicates the byte. for (x = 0; x < width; ++x) { dst_y[x] = (src_y[x] * scale) >> 16; } } void CopyRow_C(const uint8_t* src, uint8_t* dst, int count) { memcpy(dst, src, count); } void CopyRow_16_C(const uint16_t* src, uint16_t* dst, int count) { memcpy(dst, src, count * 2); } void SetRow_C(uint8_t* dst, uint8_t v8, int width) { memset(dst, v8, width); } void ARGBSetRow_C(uint8_t* dst_argb, uint32_t v32, int width) { uint32_t* d = (uint32_t*)(dst_argb); int x; for (x = 0; x < width; ++x) { d[x] = v32; } } // Filter 2 rows of YUY2 UV's (422) into U and V (420). void YUY2ToUVRow_C(const uint8_t* src_yuy2, int src_stride_yuy2, uint8_t* dst_u, uint8_t* dst_v, int width) { // Output a row of UV values, filtering 2 rows of YUY2. int x; for (x = 0; x < width; x += 2) { dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; src_yuy2 += 4; dst_u += 1; dst_v += 1; } } // Copy row of YUY2 UV's (422) into U and V (422). void YUY2ToUV422Row_C(const uint8_t* src_yuy2, uint8_t* dst_u, uint8_t* dst_v, int width) { // Output a row of UV values. int x; for (x = 0; x < width; x += 2) { dst_u[0] = src_yuy2[1]; dst_v[0] = src_yuy2[3]; src_yuy2 += 4; dst_u += 1; dst_v += 1; } } // Copy row of YUY2 Y's (422) into Y (420/422). void YUY2ToYRow_C(const uint8_t* src_yuy2, uint8_t* dst_y, int width) { // Output a row of Y values. int x; for (x = 0; x < width - 1; x += 2) { dst_y[x] = src_yuy2[0]; dst_y[x + 1] = src_yuy2[2]; src_yuy2 += 4; } if (width & 1) { dst_y[width - 1] = src_yuy2[0]; } } // Filter 2 rows of UYVY UV's (422) into U and V (420). void UYVYToUVRow_C(const uint8_t* src_uyvy, int src_stride_uyvy, uint8_t* dst_u, uint8_t* dst_v, int width) { // Output a row of UV values. int x; for (x = 0; x < width; x += 2) { dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; src_uyvy += 4; dst_u += 1; dst_v += 1; } } // Copy row of UYVY UV's (422) into U and V (422). void UYVYToUV422Row_C(const uint8_t* src_uyvy, uint8_t* dst_u, uint8_t* dst_v, int width) { // Output a row of UV values. int x; for (x = 0; x < width; x += 2) { dst_u[0] = src_uyvy[0]; dst_v[0] = src_uyvy[2]; src_uyvy += 4; dst_u += 1; dst_v += 1; } } // Copy row of UYVY Y's (422) into Y (420/422). void UYVYToYRow_C(const uint8_t* src_uyvy, uint8_t* dst_y, int width) { // Output a row of Y values. int x; for (x = 0; x < width - 1; x += 2) { dst_y[x] = src_uyvy[1]; dst_y[x + 1] = src_uyvy[3]; src_uyvy += 4; } if (width & 1) { dst_y[width - 1] = src_uyvy[1]; } } #define BLEND(f, b, a) (((256 - a) * b) >> 8) + f // Blend src_argb0 over src_argb1 and store to dst_argb. // dst_argb may be src_argb0 or src_argb1. // This code mimics the SSSE3 version for better testability. void ARGBBlendRow_C(const uint8_t* src_argb0, const uint8_t* src_argb1, uint8_t* dst_argb, int width) { int x; for (x = 0; x < width - 1; x += 2) { uint32_t fb = src_argb0[0]; uint32_t fg = src_argb0[1]; uint32_t fr = src_argb0[2]; uint32_t a = src_argb0[3]; uint32_t bb = src_argb1[0]; uint32_t bg = src_argb1[1]; uint32_t br = src_argb1[2]; dst_argb[0] = BLEND(fb, bb, a); dst_argb[1] = BLEND(fg, bg, a); dst_argb[2] = BLEND(fr, br, a); dst_argb[3] = 255u; fb = src_argb0[4 + 0]; fg = src_argb0[4 + 1]; fr = src_argb0[4 + 2]; a = src_argb0[4 + 3]; bb = src_argb1[4 + 0]; bg = src_argb1[4 + 1]; br = src_argb1[4 + 2]; dst_argb[4 + 0] = BLEND(fb, bb, a); dst_argb[4 + 1] = BLEND(fg, bg, a); dst_argb[4 + 2] = BLEND(fr, br, a); dst_argb[4 + 3] = 255u; src_argb0 += 8; src_argb1 += 8; dst_argb += 8; } if (width & 1) { uint32_t fb = src_argb0[0]; uint32_t fg = src_argb0[1]; uint32_t fr = src_argb0[2]; uint32_t a = src_argb0[3]; uint32_t bb = src_argb1[0]; uint32_t bg = src_argb1[1]; uint32_t br = src_argb1[2]; dst_argb[0] = BLEND(fb, bb, a); dst_argb[1] = BLEND(fg, bg, a); dst_argb[2] = BLEND(fr, br, a); dst_argb[3] = 255u; } } #undef BLEND #define UBLEND(f, b, a) (((a)*f) + ((255 - a) * b) + 255) >> 8 void BlendPlaneRow_C(const uint8_t* src0, const uint8_t* src1, const uint8_t* alpha, uint8_t* dst, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst[0] = UBLEND(src0[0], src1[0], alpha[0]); dst[1] = UBLEND(src0[1], src1[1], alpha[1]); src0 += 2; src1 += 2; alpha += 2; dst += 2; } if (width & 1) { dst[0] = UBLEND(src0[0], src1[0], alpha[0]); } } #undef UBLEND #define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24 // Multiply source RGB by alpha and store to destination. // This code mimics the SSSE3 version for better testability. void ARGBAttenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width - 1; i += 2) { uint32_t b = src_argb[0]; uint32_t g = src_argb[1]; uint32_t r = src_argb[2]; uint32_t a = src_argb[3]; dst_argb[0] = ATTENUATE(b, a); dst_argb[1] = ATTENUATE(g, a); dst_argb[2] = ATTENUATE(r, a); dst_argb[3] = a; b = src_argb[4]; g = src_argb[5]; r = src_argb[6]; a = src_argb[7]; dst_argb[4] = ATTENUATE(b, a); dst_argb[5] = ATTENUATE(g, a); dst_argb[6] = ATTENUATE(r, a); dst_argb[7] = a; src_argb += 8; dst_argb += 8; } if (width & 1) { const uint32_t b = src_argb[0]; const uint32_t g = src_argb[1]; const uint32_t r = src_argb[2]; const uint32_t a = src_argb[3]; dst_argb[0] = ATTENUATE(b, a); dst_argb[1] = ATTENUATE(g, a); dst_argb[2] = ATTENUATE(r, a); dst_argb[3] = a; } } #undef ATTENUATE // Divide source RGB by alpha and store to destination. // b = (b * 255 + (a / 2)) / a; // g = (g * 255 + (a / 2)) / a; // r = (r * 255 + (a / 2)) / a; // Reciprocal method is off by 1 on some values. ie 125 // 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower. #define T(a) 0x01000000 + (0x10000 / a) const uint32_t fixed_invtbl8[256] = { 0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), T(0x07), T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), T(0x0e), T(0x0f), T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), T(0x15), T(0x16), T(0x17), T(0x18), T(0x19), T(0x1a), T(0x1b), T(0x1c), T(0x1d), T(0x1e), T(0x1f), T(0x20), T(0x21), T(0x22), T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), T(0x28), T(0x29), T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), T(0x30), T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37), T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), T(0x3f), T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), T(0x46), T(0x47), T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), T(0x4d), T(0x4e), T(0x4f), T(0x50), T(0x51), T(0x52), T(0x53), T(0x54), T(0x55), T(0x56), T(0x57), T(0x58), T(0x59), T(0x5a), T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), T(0x60), T(0x61), T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), T(0x68), T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f), T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), T(0x77), T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), T(0x7e), T(0x7f), T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), T(0x85), T(0x86), T(0x87), T(0x88), T(0x89), T(0x8a), T(0x8b), T(0x8c), T(0x8d), T(0x8e), T(0x8f), T(0x90), T(0x91), T(0x92), T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), T(0x98), T(0x99), T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), T(0xa0), T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7), T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), T(0xaf), T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), T(0xb6), T(0xb7), T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), T(0xbd), T(0xbe), T(0xbf), T(0xc0), T(0xc1), T(0xc2), T(0xc3), T(0xc4), T(0xc5), T(0xc6), T(0xc7), T(0xc8), T(0xc9), T(0xca), T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), T(0xd0), T(0xd1), T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), T(0xd8), T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf), T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), T(0xe7), T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), T(0xee), T(0xef), T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), T(0xf5), T(0xf6), T(0xf7), T(0xf8), T(0xf9), T(0xfa), T(0xfb), T(0xfc), T(0xfd), T(0xfe), 0x01000100}; #undef T void ARGBUnattenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) { int i; for (i = 0; i < width; ++i) { uint32_t b = src_argb[0]; uint32_t g = src_argb[1]; uint32_t r = src_argb[2]; const uint32_t a = src_argb[3]; const uint32_t ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point b = (b * ia) >> 8; g = (g * ia) >> 8; r = (r * ia) >> 8; // Clamping should not be necessary but is free in assembly. dst_argb[0] = clamp255(b); dst_argb[1] = clamp255(g); dst_argb[2] = clamp255(r); dst_argb[3] = a; src_argb += 4; dst_argb += 4; } } void ComputeCumulativeSumRow_C(const uint8_t* row, int32_t* cumsum, const int32_t* previous_cumsum, int width) { int32_t row_sum[4] = {0, 0, 0, 0}; int x; for (x = 0; x < width; ++x) { row_sum[0] += row[x * 4 + 0]; row_sum[1] += row[x * 4 + 1]; row_sum[2] += row[x * 4 + 2]; row_sum[3] += row[x * 4 + 3]; cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; } } void CumulativeSumToAverageRow_C(const int32_t* tl, const int32_t* bl, int w, int area, uint8_t* dst, int count) { float ooa = 1.0f / area; int i; for (i = 0; i < count; ++i) { dst[0] = (uint8_t)((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa); dst[1] = (uint8_t)((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa); dst[2] = (uint8_t)((bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * ooa); dst[3] = (uint8_t)((bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * ooa); dst += 4; tl += 4; bl += 4; } } // Copy pixels from rotated source to destination row with a slope. LIBYUV_API void ARGBAffineRow_C(const uint8_t* src_argb, int src_argb_stride, uint8_t* dst_argb, const float* uv_dudv, int width) { int i; // Render a row of pixels from source into a buffer. float uv[2]; uv[0] = uv_dudv[0]; uv[1] = uv_dudv[1]; for (i = 0; i < width; ++i) { int x = (int)(uv[0]); int y = (int)(uv[1]); *(uint32_t*)(dst_argb) = *(const uint32_t*)(src_argb + y * src_argb_stride + x * 4); dst_argb += 4; uv[0] += uv_dudv[2]; uv[1] += uv_dudv[3]; } } // Blend 2 rows into 1. static void HalfRow_C(const uint8_t* src_uv, ptrdiff_t src_uv_stride, uint8_t* dst_uv, int width) { int x; for (x = 0; x < width; ++x) { dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; } } static void HalfRow_16_C(const uint16_t* src_uv, ptrdiff_t src_uv_stride, uint16_t* dst_uv, int width) { int x; for (x = 0; x < width; ++x) { dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; } } // C version 2x2 -> 2x1. void InterpolateRow_C(uint8_t* dst_ptr, const uint8_t* src_ptr, ptrdiff_t src_stride, int width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint8_t* src_ptr1 = src_ptr + src_stride; int x; if (y1_fraction == 0) { memcpy(dst_ptr, src_ptr, width); return; } if (y1_fraction == 128) { HalfRow_C(src_ptr, src_stride, dst_ptr, width); return; } for (x = 0; x < width - 1; x += 2) { dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8; dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction + 128) >> 8; src_ptr += 2; src_ptr1 += 2; dst_ptr += 2; } if (width & 1) { dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8; } } void InterpolateRow_16_C(uint16_t* dst_ptr, const uint16_t* src_ptr, ptrdiff_t src_stride, int width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; const uint16_t* src_ptr1 = src_ptr + src_stride; int x; if (source_y_fraction == 0) { memcpy(dst_ptr, src_ptr, width * 2); return; } if (source_y_fraction == 128) { HalfRow_16_C(src_ptr, src_stride, dst_ptr, width); return; } for (x = 0; x < width - 1; x += 2) { dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8; src_ptr += 2; src_ptr1 += 2; dst_ptr += 2; } if (width & 1) { dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; } } // Use first 4 shuffler values to reorder ARGB channels. void ARGBShuffleRow_C(const uint8_t* src_argb, uint8_t* dst_argb, const uint8_t* shuffler, int width) { int index0 = shuffler[0]; int index1 = shuffler[1]; int index2 = shuffler[2]; int index3 = shuffler[3]; // Shuffle a row of ARGB. int x; for (x = 0; x < width; ++x) { // To support in-place conversion. uint8_t b = src_argb[index0]; uint8_t g = src_argb[index1]; uint8_t r = src_argb[index2]; uint8_t a = src_argb[index3]; dst_argb[0] = b; dst_argb[1] = g; dst_argb[2] = r; dst_argb[3] = a; src_argb += 4; dst_argb += 4; } } void I422ToYUY2Row_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_frame, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = src_y[1]; dst_frame[3] = src_v[0]; dst_frame += 4; src_y += 2; src_u += 1; src_v += 1; } if (width & 1) { dst_frame[0] = src_y[0]; dst_frame[1] = src_u[0]; dst_frame[2] = 0; dst_frame[3] = src_v[0]; } } void I422ToUYVYRow_C(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_frame, int width) { int x; for (x = 0; x < width - 1; x += 2) { dst_frame[0] = src_u[0]; dst_frame[1] = src_y[0]; dst_frame[2] = src_v[0]; dst_frame[3] = src_y[1]; dst_frame += 4; src_y += 2; src_u += 1; src_v += 1; } if (width & 1) { dst_frame[0] = src_u[0]; dst_frame[1] = src_y[0]; dst_frame[2] = src_v[0]; dst_frame[3] = 0; } } void ARGBPolynomialRow_C(const uint8_t* src_argb, uint8_t* dst_argb, const float* poly, int width) { int i; for (i = 0; i < width; ++i) { float b = (float)(src_argb[0]); float g = (float)(src_argb[1]); float r = (float)(src_argb[2]); float a = (float)(src_argb[3]); float b2 = b * b; float g2 = g * g; float r2 = r * r; float a2 = a * a; float db = poly[0] + poly[4] * b; float dg = poly[1] + poly[5] * g; float dr = poly[2] + poly[6] * r; float da = poly[3] + poly[7] * a; float b3 = b2 * b; float g3 = g2 * g; float r3 = r2 * r; float a3 = a2 * a; db += poly[8] * b2; dg += poly[9] * g2; dr += poly[10] * r2; da += poly[11] * a2; db += poly[12] * b3; dg += poly[13] * g3; dr += poly[14] * r3; da += poly[15] * a3; dst_argb[0] = Clamp((int32_t)(db)); dst_argb[1] = Clamp((int32_t)(dg)); dst_argb[2] = Clamp((int32_t)(dr)); dst_argb[3] = Clamp((int32_t)(da)); src_argb += 4; dst_argb += 4; } } // Samples assumed to be unsigned in low 9, 10 or 12 bits. Scale factor // adjust the source integer range to the half float range desired. // This magic constant is 2^-112. Multiplying by this // is the same as subtracting 112 from the exponent, which // is the difference in exponent bias between 32-bit and // 16-bit floats. Once we've done this subtraction, we can // simply extract the low bits of the exponent and the high // bits of the mantissa from our float and we're done. // Work around GCC 7 punning warning -Wstrict-aliasing #if defined(__GNUC__) typedef uint32_t __attribute__((__may_alias__)) uint32_alias_t; #else typedef uint32_t uint32_alias_t; #endif void HalfFloatRow_C(const uint16_t* src, uint16_t* dst, float scale, int width) { int i; float mult = 1.9259299444e-34f * scale; for (i = 0; i < width; ++i) { float value = src[i] * mult; dst[i] = (uint16_t)((*(const uint32_alias_t*)&value) >> 13); } } void ByteToFloatRow_C(const uint8_t* src, float* dst, float scale, int width) { int i; for (i = 0; i < width; ++i) { float value = src[i] * scale; dst[i] = value; } } void ARGBLumaColorTableRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width, const uint8_t* luma, uint32_t lumacoeff) { uint32_t bc = lumacoeff & 0xff; uint32_t gc = (lumacoeff >> 8) & 0xff; uint32_t rc = (lumacoeff >> 16) & 0xff; int i; for (i = 0; i < width - 1; i += 2) { // Luminance in rows, color values in columns. const uint8_t* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) + luma; const uint8_t* luma1; dst_argb[0] = luma0[src_argb[0]]; dst_argb[1] = luma0[src_argb[1]]; dst_argb[2] = luma0[src_argb[2]]; dst_argb[3] = src_argb[3]; luma1 = ((src_argb[4] * bc + src_argb[5] * gc + src_argb[6] * rc) & 0x7F00u) + luma; dst_argb[4] = luma1[src_argb[4]]; dst_argb[5] = luma1[src_argb[5]]; dst_argb[6] = luma1[src_argb[6]]; dst_argb[7] = src_argb[7]; src_argb += 8; dst_argb += 8; } if (width & 1) { // Luminance in rows, color values in columns. const uint8_t* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) + luma; dst_argb[0] = luma0[src_argb[0]]; dst_argb[1] = luma0[src_argb[1]]; dst_argb[2] = luma0[src_argb[2]]; dst_argb[3] = src_argb[3]; } } void ARGBCopyAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) { int i; for (i = 0; i < width - 1; i += 2) { dst[3] = src[3]; dst[7] = src[7]; dst += 8; src += 8; } if (width & 1) { dst[3] = src[3]; } } void ARGBExtractAlphaRow_C(const uint8_t* src_argb, uint8_t* dst_a, int width) { int i; for (i = 0; i < width - 1; i += 2) { dst_a[0] = src_argb[3]; dst_a[1] = src_argb[7]; dst_a += 2; src_argb += 8; } if (width & 1) { dst_a[0] = src_argb[3]; } } void ARGBCopyYToAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) { int i; for (i = 0; i < width - 1; i += 2) { dst[3] = src[0]; dst[7] = src[1]; dst += 8; src += 2; } if (width & 1) { dst[3] = src[0]; } } // Maximum temporary width for wrappers to process at a time, in pixels. #define MAXTWIDTH 2048 #if !(defined(_MSC_VER) && defined(_M_IX86)) && \ defined(HAS_I422TORGB565ROW_SSSE3) // row_win.cc has asm version, but GCC uses 2 step wrapper. void I422ToRGB565Row_SSSE3(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_rgb565 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_I422TOARGB1555ROW_SSSE3) void I422ToARGB1555Row_SSSE3(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb1555, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_argb1555 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_I422TOARGB4444ROW_SSSE3) void I422ToARGB4444Row_SSSE3(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb4444, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_argb4444 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_NV12TORGB565ROW_SSSE3) void NV12ToRGB565Row_SSSE3(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth); ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); src_y += twidth; src_uv += twidth; dst_rgb565 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_NV12TORGB24ROW_SSSE3) void NV12ToRGB24Row_SSSE3(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth); ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); src_y += twidth; src_uv += twidth; dst_rgb24 += twidth * 3; width -= twidth; } } #endif #if defined(HAS_NV21TORGB24ROW_SSSE3) void NV21ToRGB24Row_SSSE3(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV21ToARGBRow_SSSE3(src_y, src_vu, row, yuvconstants, twidth); ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); src_y += twidth; src_vu += twidth; dst_rgb24 += twidth * 3; width -= twidth; } } #endif #if defined(HAS_NV12TORGB24ROW_AVX2) void NV12ToRGB24Row_AVX2(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth); #if defined(HAS_ARGBTORGB24ROW_AVX2) ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); #else ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); #endif src_y += twidth; src_uv += twidth; dst_rgb24 += twidth * 3; width -= twidth; } } #endif #if defined(HAS_NV21TORGB24ROW_AVX2) void NV21ToRGB24Row_AVX2(const uint8_t* src_y, const uint8_t* src_vu, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV21ToARGBRow_AVX2(src_y, src_vu, row, yuvconstants, twidth); #if defined(HAS_ARGBTORGB24ROW_AVX2) ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); #else ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); #endif src_y += twidth; src_vu += twidth; dst_rgb24 += twidth * 3; width -= twidth; } } #endif #if defined(HAS_I422TORGB565ROW_AVX2) void I422ToRGB565Row_AVX2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); #if defined(HAS_ARGBTORGB565ROW_AVX2) ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); #else ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); #endif src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_rgb565 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_I422TOARGB1555ROW_AVX2) void I422ToARGB1555Row_AVX2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb1555, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); #if defined(HAS_ARGBTOARGB1555ROW_AVX2) ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth); #else ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); #endif src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_argb1555 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_I422TOARGB4444ROW_AVX2) void I422ToARGB4444Row_AVX2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_argb4444, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); #if defined(HAS_ARGBTOARGB4444ROW_AVX2) ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth); #else ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); #endif src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_argb4444 += twidth * 2; width -= twidth; } } #endif #if defined(HAS_I422TORGB24ROW_AVX2) void I422ToRGB24Row_AVX2(const uint8_t* src_y, const uint8_t* src_u, const uint8_t* src_v, uint8_t* dst_rgb24, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); #if defined(HAS_ARGBTORGB24ROW_AVX2) ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth); #else ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); #endif src_y += twidth; src_u += twidth / 2; src_v += twidth / 2; dst_rgb24 += twidth * 3; width -= twidth; } } #endif #if defined(HAS_NV12TORGB565ROW_AVX2) void NV12ToRGB565Row_AVX2(const uint8_t* src_y, const uint8_t* src_uv, uint8_t* dst_rgb565, const struct YuvConstants* yuvconstants, int width) { // Row buffer for intermediate ARGB pixels. SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]); while (width > 0) { int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth); #if defined(HAS_ARGBTORGB565ROW_AVX2) ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); #else ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); #endif src_y += twidth; src_uv += twidth; dst_rgb565 += twidth * 2; width -= twidth; } } #endif float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) { float fsum = 0.f; int i; #if defined(__clang__) #pragma clang loop vectorize_width(4) #endif for (i = 0; i < width; ++i) { float v = *src++; fsum += v * v; *dst++ = v * scale; } return fsum; } float ScaleMaxSamples_C(const float* src, float* dst, float scale, int width) { float fmax = 0.f; int i; for (i = 0; i < width; ++i) { float v = *src++; float vs = v * scale; fmax = (v > fmax) ? v : fmax; *dst++ = vs; } return fmax; } void ScaleSamples_C(const float* src, float* dst, float scale, int width) { int i; for (i = 0; i < width; ++i) { *dst++ = *src++ * scale; } } void GaussRow_C(const uint32_t* src, uint16_t* dst, int width) { int i; for (i = 0; i < width; ++i) { *dst++ = (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4] + 128) >> 8; ++src; } } // filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row. void GaussCol_C(const uint16_t* src0, const uint16_t* src1, const uint16_t* src2, const uint16_t* src3, const uint16_t* src4, uint32_t* dst, int width) { int i; for (i = 0; i < width; ++i) { *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++; } } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif